
SWAAG-19.1

M-Switch Advanced Administration Guide



Table of Contents
Chapter 1 Overview..................................................................................................................... 1

This chapter covers the advanced features of the Isode M-Switch, giving detailed descriptions of the
advanced features and components.

Chapter 2 Channel Overview...................................................................................................... 2

The processing of messages by M-Switch is carried out by channels. This chapter describes the different
kinds of channels, and how they are configured.

Chapter 3 Routing........................................................................................................................ 5

The routing of messages by M-Switch is the process by which a message is either delivered, or relayed
to another MTA which is nearer to system which can deliver the message.

Chapter 4 Table Based Configuration...................................................................................... 16

This section covers in detail the way MTAs, Channels and Tables can be configured using tables.

Chapter 5 Content Checking..................................................................................................... 64

This chapter covers the advanced Content Checking features of the Isode M-Switch, giving detailed
descriptions of the Quarantine system and how it fits into the Messaging Audit Database

Chapter 6 Content Conversion................................................................................................. 70

M-Switch can be configured to modify the contents of messages. This includes the ability to act as a
Gateway between the threee principal protocols of X.400, Internet and ACP127 messages.

Chapter 7 M-Switch ACP 127 Operating Signals................................................................... 93

This Chapter describes M-Switch handling of ACP 127 Operating Signals (OPSIGs).

Chapter 8 Security..................................................................................................................... 99

M-Switch has a rich set of Security features. This chapter describes the different features, what they do
and how they are configured.

Chapter 9 M-Switch Authorization........................................................................................ 117

M-Switch is responsible for processing messages. This Chapter describes the post routing Authorization
checks which can be configured to take place when the MTA is considering how to handle a message
and its recipients.

Chapter 10 Boundary MTA...................................................................................................... 129

Using M-Switch at the Boundary between Domains M-Switch has features which make it very suitable
for use at the boundary between different domains.

Chapter 11 Troubleshooting...................................................................................................... 132

Some of the troubleshooting tools and techniques described in this chapter can be followed routinely as
preventative measures, as well as being used when a problem is encountered.

Chapter 12 Tips.......................................................................................................................... 149

This sections provides tips on how to configure M-Switch in unusual ways.

Chapter 13 Audit Database....................................................................................................... 154

This section covers in detail the Audit Database, in particular the Audit Records and Keys that appear
in the Audit Logs, and whether they are used in the Audit Database Schema.

M-Switch Advanced Administration Guide

iiM-Switch Advanced Administration Guide



 and Isode are trade and service marks of Isode Limited.

All products and services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Isode Limited disclaims
any responsibility for specifying which marks are owned by which companies or
organizations.

Isode software is © copyright Isode Limited 2002-2025, all rights reserved.

Isode software is a compilation of software of which Isode Limited is either the copyright
holder or licensee.

Acquisition and use of this software and related materials for any purpose requires a written
licence agreement from Isode Limited, or a written licence from an organization licensed
by Isode Limited to grant such a licence.

This manual is © copyright Isode Limited 2025.

Copyright

iiiM-Switch Advanced Administration Guide



1 Software version

This guide is published in support of Isode M-Switch R19.1. It may also be pertinent to
later releases. Please consult the release notes for further details.

2 Readership

This guide is intended for administrators who plan to configure and manage advanced
features of the Isode M-Switch message switch. For detailed information on Operating
M-Switch, use the complementary volume the M-Switch Operator's Guide . Administrators
who plan to configure and manage more basic features of the Isode M-Switch message
switch use the complementary volume the M-Switch Administration Guide .

3 How to use this guide

You are advised to read through Chapter 1, Overview, before you start to set up your
messaging system.

4 Typographical conventions

The text of this manual uses different typefaces to identify different types of objects, such
as file names and input to the system. The typeface conventions are shown in the table
below.

ExampleObject

isoentitiesFile and directory names

mkpasswdProgram and macro names

cd newdirInput to the system

see Section 5, “File system place holders”Cross references

Notes are additional information; cautions
are warnings.

Additional information to note, or a warning
that the system could be damaged by certain
actions.

Arrows are used to indicate options from the menu system that should be selected in
sequence.

For example, File → New means to select the File menu and then select the New option
from it.

Preface

ivM-Switch Advanced Administration Guide

../swopg/SWOPG.pdf#Overview_01
../swadm/SWADM.pdf#Overview_01


5 File system place holders

Where directory names are given in the text, they are often place holders for the names of
actual directories where particular files are stored. The actual directory names used depend
on how the software is built and installed. All of these directories can be changed by
configuration.

Certain configuration files are searched for first in (ETCDIR) and then (SHAREDIR), so
local copies can override shared information.

The actual directories vary, depending on whether the platform is Windows or UNIX.

UNIXWindows (default)Place holder for the
directory used to store...

Name

/etc/isodeC:\Isode\etcSystem-specific configuration
files.

(ETCDIR)

/opt/isode/shareC:\Program Files\Isode\shareConfiguration files that may
be shared between systems.

(SHAREDIR)

/opt/isode/binC:\Program Files\Isode\binPrograms run by users.(BINDIR)

/opt/isode/sbinC:\Program Files\Isode\binPrograms run by the system
administrators.

(SBINDIR)

/opt/isode/libexecC:\Program Files\Isode\binPrograms run by other
programs; for example,
M-Switch channel programs.

(EXECDIR)

/opt/isode/libC:\Program Files\Isode\binLibraries.(LIBDIR)

/var/isodeC:\IsodeStoring local data.(DATADIR)

/var/isode/logC:\Isode\logLog files.(LOGDIR)

/var/isode/tmpC:\Isode\tmpLarge PDUs on disk.(CONFPDUSPOOLDIR)

/var/isode/switchC:\Isode\switchThe M-Switch queue.(QUEDIR)

/var/isode/d3-dbC:\Isode\d3-dbThe Directory Server’s
configuration.

(DSADIR)

6 Support queries and bug reporting

A number of email addresses are available for contacting Isode. Please use the address
relevant to the content of your message.

• For all account-related inquiries and issues: customer-service@isode.com. If customers
are unsure of which list to use then they should send to this list. The list is monitored
daily, and all messages will be responded to.

• For all licensing related issues: license@isode.com.

• For all technical inquiries and problem reports, including documentation issues from
customers with support contracts: support@isode.com. Customers should include relevant
contact details in initial calls to speed processing. Messages which are continuations of
an existing call should include the call ID in the subject line. Customers without support
contracts should not use this address.

Preface

vM-Switch Advanced Administration Guide

mailto:customer-service@isode.com
mailto:license@isode.com
mailto:support@isode.com


• For all sales inquiries and similar communication: sales@isode.com.

Bug reports on software releases are welcomed. These may be sent by any means, but
electronic mail to the support address listed above is preferred. Please send proposed fixes
with the reports if possible. Any reports will be acknowledged, but further action is not
guaranteed. Any changes resulting from bug reports may be included in future releases.

Isode sends release announcements and other information to the Isode News email list,
which can be subscribed to from the address:
http://www.isode.com/company/news-signup.php [http://www.isode.com/company/
contact.php]

7 Export controls

Many Isode products use TLS (Transport Layer Security) to encrypt data in transit. This
means that these products are subject to UK Export Controls.

For some countries (at the time of shipping this release, these comprise all EU countries,
United States of America, Canada, Australia, New Zealand, Switzerland, Norway, Japan),
these Export Controls can be handled by administrative process as part of evaluation or
purchase. For other countries, a special Export License is required. This can be applied for
only in context of a purchase order for those Isode products.

You must ensure that you comply with these Export Controls where applicable, i.e. if you
are licensing or re-selling Isode products.

The TLS feature of Isode products is enabled by a TLS Product Activation feature. This
feature may be turned off, and Isode products without this TLS feature are not export
controlled. This can be helpful to support evaluation of Isode products in countries that
need a special export license.

Isode products are used to administer sensitive data and so Isode strongly recommends
that all operational deployments of Isode products use the export-controlled TLS feature.

All Isode Software is subject to a license agreement and your attention is also called to the
export terms of your Isode license.

Preface

viM-Switch Advanced Administration Guide

mailto:sales@isode.com
http://www.isode.com/company/contact.php
http://www.isode.com/company/contact.php
http://www.isode.com/company/contact.php


Chapter 1 Overview
This chapter covers the advanced features of the Isode M-Switch, giving detailed
descriptions of the advanced features and components.

1.1 What is the Isode M-Switch?

M-Switch is a high-performance, versatile Message Transfer Agent (MTA), which can be
installed on either Windows or UNIX platforms. It is the main component in a messaging
system and supports:

• Internet messaging

• X.400 messaging

• A mixture of the two variants, converting messages from one form to the other.

The MTA consists of:

• The Queue Manager (qmgr)

• Channels

• Protocol listeners for messaging entering the MTA (iaed or smtpsrvr)

• M-Vault, used to hold configuration

• Management tools (GUIs and command line)

Overview

1M-Switch Advanced Administration Guide



Chapter 2 Channel Overview
The processing of messages by M-Switch is carried out by channels. This chapter describes
the different kinds of channels, and how they are configured.

2.1 Overview

This chapter is principally concerned with configuring channels which perform most of
the work of the core MTA. Channels are normally configured using MConsole to add,
delete or modify configuration values in the Directory. When the Queue Manager starts
up it reads the directory entries (having obtained the necessary Directory connection
information from its mtaboot.xml file) and creates an mtatailor.tai file which contains the
runtime MTA configuration information and is used by all other M-Switch programs to
get the MTA configuration values. If you are using MConsole to set up MTA tailoring, the
information in this chapter explains in greater detail how the various values are used. If
you are not using MConsole, this chapter gives the detail you will need to construct the
mtatailor.tai file using a standard editor.

2.2 Channel Types

The following types of channel can be configured in M-Switch:

Table 2.1. Channel Types

Type of channelValue

An incoming channelin

An outgoing channelout

Both incoming and outgoingboth

A channel which performs message checkingcheck

A channel which acts as a webserver to allow clients to perform message
corrections

corrector

A channel which performs general MTA housekeepinghousekeeper

A channel which performs message conversionshaper

2.3 How channels work

Channel processes can be:

• started by the queue manager (using the ‘program’ value configured for the channel)

• part of a standalone daemon or service, e.g. acp142

• accessed through a process using the X.400 MT API or XAPI XMT API

Channel Overview

2M-Switch Advanced Administration Guide



The channel name is set in the command line when started by the queue manager, and is
part of the configuration of the process for the other types.

The channel process opens a connection to the queue manager which is used for
communication between the two. The channel process:

• requests messages to process

• informs the queue manager of the results of operations

• can send to the queue manager details of messages during transfer

The queue manager:

• requests the channel to connect to a peer MTA (for connection oriented channels)

• gives the channel a message plus a set of recipients to process

• relays commands from a console for controlling the channel

The results of an operation can cause the queue manager to perform other steps. There are
three kinds of temporary problem:

• a channel failure results in no processing on the channel for an interval

• an MTA failure results in the MTA being made inactive for an interval

• a message failure causes the message to be delayed for an interval

These delays are visible in MConsole. If a message is being processed when a channel or
MTA failure occurs, the message can also be delayed.

The channel can tell the queue manager that a report is needed for the message. The queue
manager will then send the message to the housekeeper channel.

Housekeeper Channel

The housekeeper channel performs a number of operations on messages on behalf of the
queue manager:

• Generation of Reports/DSNs on error or successful delivery

• Conversion of Reports to DSNs

• Redirecting a recipient to another address

• Causing the routing of a recipient to be re-evaluated

• Non-delivering a message at the request of an operator

• Discarding a message at the request of an operator

• Generate a warning DSN for a message Generate IPNs/MDNs for a boundary MTA

2.4 Channel Pairing

Many of the channels within the MTA naturally fall into pairs. For instance, it is usual to
have a channel handling inbound messages (responder or server), and a corresponding
channel handling outbound messages (initiator or client).

As this is a common occurrence, one channel definition in the mtatailor.tai file can be used
to define both channels. Such a channel should be marked as type both . Where both sides
of the channel require a parameter, such as a table, there is an explicit in and out value.

Channel Overview

3M-Switch Advanced Administration Guide



Channel pairing can bring several benefits. If the Queue Manager knows about paired
channels, it can make some optimizations. When a message is received for an MTA on the
inbound side of a paired channel, it can, if there are messages waiting to go out on that
channel, assume that this MTA has just come up and schedule a retry immediately.

For X.400 channels, an alternative to channel pairing is to configure a channel for two-way
alternate mode of operation, which enables a responder or initiator to both send and receive
messages over a single association. This is described in the Section entitled X.400 P1
Channel.

A side effect of channel pairing can help with authorization. An incoming channel usually
has a fixed name. However, if a number of channels are defined in the mtatailor.tai file
with a key of that value, then all of these channels are potentially usable. In this case, the
MTA that the message was received in is looked up in each of the associated mtatable
table. The first channel to match on both key and the contents of the mtatable is chosen.
Authorization is then done on this basis. One of the channels may not have an mtatable
associated with it, in which case this is the default channel to use.

NOTE: This gives the first match, rather than the best possible match of tables.

The format of the mtatable is identical to the domain table. The value on the right hand
side is only used in determining matches. It must however be a legal value.

As an example, consider a host on the Internet which wishes to authorize usage on the basis
of whether the user is local or remote. This might be achieved by the following:

chan smtp-local key=“smtp”,mtatable=localhosts,
...
chan smtp-internet key=“smtp”

The incoming channel then claims to be smtp. If the MTA the message is received from
is present in the localhosts table, then smtp-local is used as the channel, and authorization
done on that basis. Otherwise it is assumed to be smtp-internet and potentially different
authorization is applied.

On a smaller site, this feature can be used to map many channels onto one.

Channel Overview

4M-Switch Advanced Administration Guide



Chapter 3 Routing
The routing of messages by M-Switch is the process by which a message is either delivered,
or relayed to another MTA which is nearer to system which can deliver the message.

3.1 Lookup policies

The way M-Switch performs routing can work in several different ways. At the highest
level there are two basic models:

• Directory-based routing

• Table-based routing

In Directory based routing, routing information is held in the Directory and is read by the
MTA components (such as channels) as required when processing messages etc. This is
the model which is appropriate for most deployments of M-Switch and is generally
recommended by Isode. Although information is held in the Directory, tables are still used
in a Directory-based routing configuration. These tables can be held in the Directory or in
files.

In Table-based routing all routing information is held in files on disk. Some M-Switch
features are not available when using Table-based routing. Table-based routing can be
appropriate for some very simple configurations, but Isode generally do not recommend
the use of Table-based routing.

LASER routing (named after the Internet working group that developed a specification
with this name that did not get published as a standard) is a subset of Directory-based
routing which uses LDAP search operations to find routing and/or delivery information
for Internet addresses. It is possible for this information to be held in a separate LDAP
directory from the rest of M-Switch’s routing and configuration information.

M-Switch tailoring configuration can also be held in the Directory or maintained exclusively
in configuration files. Although the mtatailor.tai file is always held on disk, most
configurations will hold the MTA tailoring information in the Directory with the Queue
Manager downloading the information from the Directory to create the mtatailor.tai file
for other M-Switch programs to use.

The various options for routing models are controlled using the Lookup Policy configuration
of the MTA. (Although you can also configure different Lookup Policies on a per channel
basis).

Possible Lookup Polices are:

Table 3.1. Lookup Policies

EffectValue

Use tables for lookuptable [=prefix]

Use X.500 for lookupds

Use the DNS for lookupdns [=prefix]

Use the DNS for lookup with routing override in tablesdns-tbl [=prefix]

Queue the messagequeue

Continue with the lookup policies even if the previous nameserver
lookup fails

nssoft

Routing

5M-Switch Advanced Administration Guide



Use the DNS for initial lookup. If necessary, continue address
resolution using the Directory

dns-ds

Use DNS for routing and LASER lookup in the Directory for delivery
information

dns-laser

Use tables for routing and LASER lookup for deliverytable-laser

Use DNS for initial lookup. If necessary continue using tables. Use
LASER for delivery information

dns-table-laser

If the optional prefix is specified in any of the policies, it will be prepended to the standard
tables, domain, or, channel, aliases and users.

For example, if the policy is table=eg then the tables that may referenced when evaluating
that policy are eg-domain, eg-or, eg-channel, eg-aliases and eg-users. The default value
for default_lookup_policy is table.

Note: these Lookup Policies can be combined into a sequence if required. The routing
process will then try each policy in the sequence in turn until the address in question can
be successfully routed.

3.2 Wildcard routing

The general routing algorithm described in  M-Switch Administration Guide allows the
administrator to configure a portion of the address space to be routed in a particular way
(e.g. towards an MTA). In the example, this model of routing works well because the OR
Address prefix (e.g. /O=AnotherCompany/PRMD=Isode/ADMD= /C=GB/) can be
expressed as a Routing Tree node.

However, there are occasions when this works less well, and a large number of Routing
Tree nodes need to be configured to represent a set of similar OR addresses. In these cases
it is possible to specify a Filter in a Routing Tree node, which is used to route subordinate
OR Address attributes.

Wildcard Routing is only supported in Directory-based configurations: the filters are held
as attributes in entries within a Routing Tree.

Routing Filters should be configured using the Routing Tree entry editor within MConsole's
Switch Configuration View.

The following sections describe the two sorts of Filters available:

• Routing Filters

• Redirect Filters.

3.2.1 Routing Filters

Routing filters allow a set of addresses to be routed using the information in an arbitrary
routing node. Routing filters are only used to cause routing to relay to a non-local MTA –
a Routing filter is not used to route for local delivery. (See Section 3.2.2, “Redirect filters”
if you wish to do this.)

Table 3.2. Routing filter example

Destination LocationAddress

BRISTOL/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGGDZPZX/

Routing

6M-Switch Advanced Administration Guide

#ConnectOtherX400MTAs_01_01


LUTON/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGGWZPZX/

GATWICK/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGKKZPZX/

GLASGOW/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGPFZPZX/

EDINBURGH/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGPHZPZX/

Then the following routes would be needed:

Table 3.3. Routing filters required

London MTA/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGGD*/

London MTA/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGGW*/

London MTA/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGKK*/

Scotland MTA/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGPFZPZX/

Scotland MTA/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGPHZPZX/

A Routing filter consists of:

• an OR Address attribute type which is an OID (e.g. mHS-OrganizationalUnitName)

• weight (used to prioritise multiple matching Filters)

• regular expression (used to match OR Address attribute value)

• DN of a RoutingTree node

In the above example, the attribute types are all mHS-OrganizationalUnitName have
the default weight of 5; have regular expression values which are either a simple string or
include regular expression (regex) features; and have a Routing Tree node (London or
Scotland).

The weights are not important in this example, because the regexes are configured so that
no more than one regex can match. In configurations where more than one value can match,
the weight determines which Filter is used (only the first matching filter will be used).

The regexes are of two types:

• simple string

• simple character and special regex chars such as

• “^” start of line

• “$” end of line

• “.” any character

If the regex is absent, all values match.

The Routing Tree node allows the routing information in any Routing Tree node to be used
to route address which match the filter. In the above example, addresses which do not
match any of the Filters are routed to a fallback MTA.

Routing filter example:

/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGGDZPZX/ <--- address in BRISTOL
/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGGWZPZX/ <---address in LUTON
/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGKKZPZX/ <---address in GATWICK
/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGPFZPZX/ <--- address GLASGOW
/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGPHZPZX/ <--- address in  EDINBURGH

Then the following routes would be needed (using regex syntax):

Routing

7M-Switch Advanced Administration Guide



/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGGD.*/ ----> London MTA
/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGGW.*/ ----> London MTA
/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGKK.*/ ----> London MTA

/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGPFZPZX/ ----> Scotland MTA
/C=XX/A=ICAO/P=EG/O=AFTN/OU=EGPHZPZX/ ----> Scotland MTA

To do this you would add the Routing Filters as shown in Figure 3.2, “Example of a
Routing Filter.”

Note how in this example External X.400 MTAs for London and Scotland have been added.
Routing Tree nodes for /C=XX/A=ICAO/P=EG/O=AFTN/OU=London (which has MTA
Information pointing at the London External MTA) and
/C=XX/A=ICAO/P=EG/O=AFTN/OU=Scotland/ ((which has MTA Information pointing
at the London External MTA) have also been added.

Figure 3.1. Example of MTA Info.

Routing

8M-Switch Advanced Administration Guide



Figure 3.2. Example of a Routing Filter.

A routing filter consists of

• an OR Address attribute type which is an OID (e.g. mHS-OrganizationalUnitName)

• weight (used to prioritise multiple matching filters)

• regular expression (used to match OR Address attribute values)

• DN of a Routing Tree node

In the above example, the attribute types are all mHS-OrganizationalUnitName; have the
default weight of 5; have regular expression values which are either a simple string or
include regular expression (regex) features; and have a Routing Tree node (London or
Scotland).

The weights are not important in this example, because the regexes are configured so that
no more than one regex can match. In configurations where more than one value can match,
the weight determines which filter is used (only the first matching filter will be used).

The regexes are of two types

• simple string

• simple character and special regex chars such as

• ^ start of line;

• $ end of line

• . any character

If the regex is absent, all values match.

All OR Address attribute values are treated as a regex. So special regex chars must be
quoted. So if you wanted, for instance, to match

/OU=Fleet(Rear)/

you would have to configure the value:

Routing

9M-Switch Advanced Administration Guide



/OU=Fleet\(Rear\)/

Note:  PCRE regex’s are used which are rather more feature-full than described
in this section

The Routing Tree node allows the routing information in any Routing Tree node to be
used to route address which match the filter.

In the above example, addresses which do not match any of the Routing Filters are routed
to a fallback MTA.

When creating or modifying a Routing Filter, the following window is displayed.

Figure 3.3. Creating or modifying a filter.

3.2.2 Redirect filters

When you wish to use wildcard routing, you can also use Redirect Filters. These are the
same as Routing Filters, except that instead of using the Routing Information in an arbitrary
Routing Tree node, the address is redirected to a new ORName. In all other respects
Redirect Filters and Routing Filters work in the same way.

In this example,

/C=XX/A=ICAO/P=AENA/O=LECM/OU=LEMD/CN=LEMDYMY*/ ---> is redirected
to /CN=Fred Jones/
/C=XX/A=ICAO/P=AENA/O=LECM/OU=LEMD/CN=LEMDZPZX/ ---> is redirected
to /CN=John Smith/

Routing

10M-Switch Advanced Administration Guide



Figure 3.4. Redirect Filter.

The figure below shows how to edit a redirect filter to cause the Redirect Filter to operate
as needed in this example.

Figure 3.5. Redirect Filter.

The above configuration results in the redirect required as shown using ckadr below.

C:\Program Files\Isode\bin>ckadr -x
    "/C=XX/A=ICAO/P=AENA/O=LECM/OU=LEMD/CN=LEMDYMYA/"
/C=XX/A=ICAO/P=AENA/O=LECM/OU=LEMD/CN=LEMDYMYA/ ->  (x400)  
    /CN=Fred Jones/OU=LEMD/O=LECM/PRMD=AENA/ADMD=ICAO/C=XX/

/C=XX/A=ICAO/P=AENA/O=LECM/OU=LEMD/CN=LEMDYMYA/ -> (rfc822) 
    "/CN=Fred Jones/OU=L EMD/O=LECM/PRMD=AENA/ADMD=ICAO/C=XX/"
    @x400.headquarters.net

Delivered to x400.headquarters.net by p3deliver (weight: 0)

Routing

11M-Switch Advanced Administration Guide



3.2.3 Rerouting

There are other ways of configuring routing behaviour which override the simple model
outlined above.

3.2.3.1 Diversions

When it is known that an MTA is temporarily unavailable, it can be convenient to label
this in the configuration and allow a fallback MTA to be used without attempting the failed
MTA. To do this, select the Peer Connection of the MTA which is unavailable and select
the Diverted checkbox.

Figure 3.6. Setting an MTA as unavailable.

3.3 Redirect Filters

Redirect Filters are only supported in Directory-based configurations: the filters are held
as attributes in entries within a Routing Tree. Redirect Filters should be configured using
the Routing Tree entry editor within MConsole's Switch Configuration View.

When you wish to use wildcard routing, use Redirect Filters. These are the same as Routing
Filters, except that instead of using the Routing Information in an arbitrary Routing Tree
node, the address is redirected to a new ORName. In all other respects Redirect Filters and
Routing Filters work in the same way.

Routing

12M-Switch Advanced Administration Guide



3.4 Multiple Institutions on One MTA

The MTA contains several features that enable a site to behave as multiple mail hubs and/or
as a central mail gateway between the external world and the internal subdomains. The
features in question are:

• the local key in the domain and/or or tables

• the external qualifier in the aliases tables

• the internal and external parameters to the MIME header normalisation filter

NOTE: In general, the local key should be used symmetrically in the domain and or tables
(based on the or2rfc and rfc2or mappings). If they are not symmetric, unexpected results
may be obtained.

To explain how these features may be used, this section introduces three possible
configurations. Each one slightly more complex than its predecessor and each one is built
from its predecessor. These examples consider the situation of two domains, the main site
name, widget.co.uk, and a subdomain under that site, admin.widget.co.uk.

3.4.1 The MTA Acting As Two Different, Independent Mail
Hubs

This is the situation where one system is acting as two distinct domains. The main domain
widget.co.uk has the information relating to its local users in the tables named users
and aliases, and the subdomain admin.widget.co.uk has the information relating to
its local users in the tables admin-users and admin-aliases.

There is no intersection between the widget.co.uk name space and the
admin.widget.co.uk name space so these tables can be independently maintained.

The MTA has to be informed that admin.widget.co.uk is a local domain. This is done
via the relevant entry in the domain table, for example:

    admin.widget.co.uk:local=admin

and/or the or table:

    OU$admin.O$widget.PRMD$widget.ADMD$ .C$GB:local admin

3.4.2 The MTA and Multiple Namespaces

This is the situation where the MTA is acting as one complete namespace composed of
two separate realms, and is hiding multiple namespaces behind a single externally-visible
namespace; for example, all users have mail addresses of the form:

     user@widget.co.uk

This section outlines an example where the RFC-822 domain to be used externally is
widget.co.uk, and there is more than one internal domain: admin.widget.co.uk,
sales.widget.co.uk, and so on. These are separate namespaces, so that it is possible
to have:

Routing

13M-Switch Advanced Administration Guide



    fred@admin.widget.co.uk
    fred@sales.widget.co.uk

and have these addresses refer to separate people; in this case they must be translated to
different external addresses.

NOTE: It is this aspect that makes the solution complicated - if your internal domains are
essentially there for routing, and there are no name conflicts, then the local-parts (to the
left of the ‘@’) can be treated as coming from a single namespace.

Each namespace needs a name, although one can be used as the default; it is normal for
the external domain to be the default namespace. For convenience the internal namespaces
will be called after the domains, that is, admin for admin.widget.co.uk and sales for
sales.widget.co.uk.

Then the system would be tailored with:

     loc_dom_site widget.co.uk

In the domain table, you would have:

        widget.co.uk: local
        admin.widget.co.uk: local=admin
        sales.widget.co.uk: local=sales

and so on.

The local keyword means that the local part of the address is significant, and to be used
for routing. The value identifies the namespace, that is, the tables that get used when looking
up the local-part. There will be the default aliases and users tables, used for the default
namespace; in addition, for each named namespace, you need:

• <namespace>-aliases

• <namespace>-users

• <namespace>-channel

The <namespace>-channel table has the same format as the normal channel table, and
should contain as keys those MTAs that appear in the <namespace>-users table. It could
be a link to the normal channel table.

Consider two users:

Table 3.4. local user table

ExternalInternal

J.A.Smith@widget.co.uksmithj@admin.widget.co.uk

J.B.Smith@widget.co.uksmithj@sales.widget.co.uk

These users would need entries as outlined below:

The main aliases table:

       J.A.Smith: alias smithj@admin.widget.co.uk 822
       J.B.Smith: alias smithj@sales.widget.co.uk 822

The function of these two entries is to direct mail for the external mail address to the
appropriate internal address.

Routing

14M-Switch Advanced Administration Guide



No entries are needed in the main users table.

The admin-aliases table:

    smithj: synonym J.A.Smith@widget.co.uk 822 external

The sales-aliases table:

    smithj: synonym J.B.Smith@widget.co.uk 822 external

The function of these entries is to translate the internal address to the external address. The
external keyword is important here. It stops the looping that would otherwise occur between
the entries in the <intdom>*-aliases tables and the main aliases table. It also illustrates why
admin and sales need to be in separate namespaces: there are entries with the same key
mapping to different information.

The admin-users table:

    smithj: smtp intmta1.co.uk

The sales-users table:

    smithj: smtp intmta2.co.uk

These entries are only illustrative: the users table gives the channel/MTA for delivery for
that user. It is assumed that these users are not actually local to the MTA, therefore the
MTA in the user's entry will not be loc_dom_mta. (In this case the channel is not relevant,
but it is a useful mnemonic to set the channel to that channel which will be used for the
MTA). The internal domains may be reached by a single gateway, in which case that will
be the MTA name used. There needs to be a suitable entry in admin-channel for
intmta1.co.uk and one in sales-channel for intmta2.co.uk (or whatever actual
values for the MTA key are used).

The result of these entries will be as follows:

• Mail submitted by smithj@admin.widget.co.uk will have the originator (as in the
SMTP MAIL FROM:<> command, or - suitably translated - in X.400 P1 envelope) changed
to @A.Smith@widget.co.uk@.

• Mail which arrives at the MTA addressed to J.A.Smith@widget.co.uk will be sent
to intmta1.co.uk addressed (in the envelope) to smithj@admin.widget.co.uk.

Note that to change header fields, you must carry out the changes to header normalisation
as described in Internet Message Filters.

Routing

15M-Switch Advanced Administration Guide



Chapter 4 Table Based Configuration
This section covers in detail the way MTAs, Channels and Tables can be configured using
tables.

4.1 MTAs

An M-Switch MTA configuration is accessed by M-Switch components using the
mtatailor.tai file. This is usually created by the Queue Manager on startup from information
held in the Directory. Table-based configuration without the use of the Directory is supported
but is not appropriate for most deployments.

Variables can be one of three types:

• standard mtatailor variables (e.g. "postmaster postmaster@example.com")

• Isode variables (e.g. "fsync TRUE")

• pp variables (e.g. "set snmp=true")

This section describes the tailoring variables which can appear in Mconsole and the
mtatailor.tai file when generated by the Queue Manager. Each of the variables is described
with the following information:

• The name of variable as known in the mtatailor.tai file.

• A reference to the Mconsole tab under which the variable appears.

• A description of the variable, the M-Switch feature it controls and its syntax.

• Whether the variable is mandatory or optional.

• Whether the variable is

• An ordinary tailor variable.

• An "Isode" variable (overriding any value in the isotailor file).

• A "pp" variable.

• A variable which can only be configured in the Directory.

There are a large number of tailoring variables that can be referenced in the mtatailor.tai
file. These tailoring variables are divided into two types, mandatory variables and optional
variables. They are listed and described in the sections below. For convenience, they are
organized by the Mconsole tab in which they appear.

4.1.1 Main

These variables appear in the Main tab of Mconsole.

Full MTA Domain (Mandatory; Tailor(loc_dom_mta)): This is the full domain name of
the local MTA. It is used for trapping routing loops and so should be globally unique. For
example: ourmta.example.com

Note that this value is not configured in the directory. If the configuration is downloaded
from the directory by the queue manager, the value of this is set from the local host's name.

Description (Optional; Directory): A textual description of the MTA.

Table Based Configuration

16M-Switch Advanced Administration Guide



Postmaster (Mandatory; Tailor(postmaster)): This is the RFC 822 address of the local
mail system administrator. Typically of the form: Postmaster
<postmaster@example.com>

Default Domain (Internet) (Mandatory; Tailor(loc_dom_site)): This is the full domain
name of the local site. This is used to reference the site, and may refer to a group of MTAs
collectively. For example: example.com

Default Domain (X.400 O/R) (Mandatory; Tailor(loc_or)): This is the local OR-address
defaults given in X.400 RFC 1327 encoding form. It is used to fill in missing default
components and for tracing fields. It is not recognised as the local X.400 domain by default,
and must be marked in the or table.

For example: "/OU=Sales/O=attlee/PRMD=TestPRMD/ADMD= /C=GB/"

If the name contains spaces or other special characters, it must be quoted as above.

Enable SNMP sub-agent (Optional; PP(set snmp)): Selecting this option makes the
Queue Manager connect to the master SNMP agent, enabling monitoring of M-Switch
using SNMP. For example: set snmp=true

4.1.2 Delivery

These variables appear in the Delivery tab of MConsole. They configure the behaviour of
the MTA when handling messages and determining whether the message should be delivered
or non-delivered.

Some of the variables in this section are based on the priority of the message, The variables
that can be set vary depending on whether standard X.400 or Military priorities are in use.
This can be set using Mconsole, but this does not set a configurable value, merely changing
the options presented as configurable.

The priority of a message is determined from values in the message envelope or from
heading fields for an Internet message. In decreasing order of preference:

• Value from the message envelope

• Value from MMHS-Primary-Precedence heading field

• Value from MMHS-Copy-Precedence heading field

• Value from Priority heading field

Timeout From Submission (Optional; Tailor(returntime)): This is the time after which
to expire an undelivered message, probe or report. The time is calculated from the time a
message, probe or report is submitted to the MTS, or from the deferred time.

The times may be specified as hours , hours : minutes , or hours : minutes : seconds. For
example, 15 minutes is specified as 0:15.

Note: Messages that pass through the list channel may have their priority changed: Internet
messages are always set to low priority; the behavior for X.400 messages depends on the
Distribution List policy, which allows the existing priority to be preserved or a new priority
level to be substituted.

The CCITT F.410 recommendations for these values are: high priority 2 hours; normal
priority 6 hours; low priority 12 hours.

The Isode defaults for X.400 priorities are: high priority 36 hours; normal priority 3 days;
low priority 6 days. The Isode defaults for military priorities are: override priority 6 hours;
flash priority 36 hours; immediate priority 2 days; priority priority 3 days; routine 4 days;
deferred 6 days. The default for reports is 36 hours and for probes is 1 day.

The order of the values in the configured value is (with the military priority in parentheses):

Table Based Configuration

17M-Switch Advanced Administration Guide



• Message Normal (Priority) : Isode default 72

• Message High (Flash) : Isode default 36

• Message Low (Deferred) : Isode default 144

• Report : Isode default 36 Probe : Isode default 24

• Message Override : Isode default 6

• Message Immediate : Isode default 48

• Message Routine : Isode default 96

These defaults would be configured in the mtatailor.tai file as:

returntime 72 36 144 36 24 6 48 96

If the MTA attempts to timeout a message which is currently active, because a transfer or
delivery attempt is in progress, then the timeout is delayed for a short period. By default
this is 60 seconds. This may be configured using the internal variable
timeout_retry_interval ; for example: set timeout_retry_interval=120

Timeout From Arrival (Optional; Tailor(returntimemin)): This is similar to
returntime, except that the time is calculated from the time a message arrives at the
MTA, as opposed to the time a message is submitted to the MTS. The purpose of this
variable is to permit the local delivery or transfer of messages which have exceeded the
time given in returntime. This could occur if the message has taken a long time to reach
the MTA, or if an old RFC 822 message has been resent.

The value takes the same form as returntime, that is hours, hours:minutes, or
hours:minutes:seconds, and could be set to something like 35 minutes (0:35). As with
returntime, specifying one value sets the time for normal priority, and default values
for high and low priority messages are then automatically set based on the value given.
These defaults can be overridden as described for the returntime variable. The initial
default value is zero.

Setting returntimemin values greater than returntime values results in only the time
from arrival at the MTA being used. As a guideline for X.410, the CCITT F.410
recommendations give target transfer times for 95% of messages as 0:35 for normal priority,
0:10 for high priority and 02:24 for low priority.

The Isode defaults are set to 10 minutes for all priorities which is configured as:

returntimemin "0:10" "0:10" "0:10" "0:10" "0:10" "0:10" "0:10" "0:10"

Detect Loops After (Traces) (Optional; Tailor(maxhops)): This is a number indicating
the number of trace fields a message may contain. If it has more than this number, the
message will be rejected as looping. The default is 25.

Detect Loops After (Loops) (Optional; Tailor(maxloops)): This is a number indicating
the number of times a message may pass through this MTA before being rejected. The
default is 5.

Warning Messages (Maximum) (Optional; Tailor(nwarnings)): This is the maximum
number of warnings to send. The default is 2. When the value is greater than 0, the default
value of the ESMTP parameter includes delay.

Warning Messages (Interval) (Optional; Tailor(warninterval)): This is the time in
hours after which to send a warning to the sender of the message telling him or her that the
message is stuck in the MTA. The default is 24 hours.

Table Based Configuration

18M-Switch Advanced Administration Guide



4.1.3 Routing

Items configured in the Routing tab of MConsole configure the way in which M-Switch
components route messages using Directory-based Routing. The information configured
here is held in the Directory and accessed directly by the M-Switch components.

No mtatailor.tai variables are set as a result of configuring values in the Routing tab.

4.1.4 Lookup

Items configured in the Lookup tab of MConsole configure the routing strategy of the
MTA.

Lookup Policies (Mandatory; Tailor(default_lookup_policy)): This configures a
sequence of Lookup policies which determine the way in which M-Switch components
such as channels perform routing. The possible options and their effect is described in
Lookup Policies.

An example of how this is configured in a MIXER configuration is:

default_lookup_policy ds table-laser dns

Most of the remaining values all configure Directory access. By definition there is no need
for table-based ways to configure these values.

Directory Access (Access Method) (Optional; PP(set x500_access)): This configures
the way in which Directory is accessed by M-Switch components. This be either DAP (the
default) or LDAP. This could be configured by: set x500_access=ldap

Connection Details (Host) (Optional; PP(set ldap_host)): This configures the LDAP
host when using LDAP for Directory access. For example: set ldap_host=localhost

Connection Details (Port) (Optional; PP(set ldap_port)) : This configures the LDAP
port when using LDAP for Directory access. For example: set ldap_port=19389

Connection Details (Authentication Mechanism) (‘Optional; PP(set
ldap_sasl_mech)): configures the SASL mechanism when using LDAP for Directory
access. For example: set ldap_sasl_mech=CRAM-MD5

Connection Details (User) (Optional; PP(set ldap_sasl_user)): configures the SASL
userid when using LDAP for Directory access with a SASL authentication mechanism.
For example: set ldap_sasl_user=myid

Connection Details (Password) (Optional; PP(set ldap_sasl_pass)): configures the
SASL password when using LDAP for Directory access with a SASL authentication
mechanism. For example: set ldap_sasl_pass=pw

Subaddressing (Recipient delimiter) (Optional; PP(set recipient_delimiter)):
This variable enables a subaddressing separator to be specified so that routing of the RFC822
address can be performed using using only the section of the local-part of the address
preceding the delimiter. Commonly this delimiter is "+" and the technique is known as
"plus-addressing". For example: set recipient_delimiter=+

The SASL Server Configuration variables are used when configuring the MTA to offer
SASL authentication to SMTP clients via the SMTP AUTH command.

SASL Configuration Entry (Optional; PP(set sasl_config_entry)): This variable
selects where in the Directory the MTA looks for SASL configuration information. The
information read from the entry is then used by inbound SMTP channels when performing
SASL authentication in response to the AUTH command. The SASL Configuration Entry
itself may contain various attributes which control the way in which SASL is used (by the
DSA as well as by the MTA), and can be edited using SODIUM if necessary.

Table Based Configuration

19M-Switch Advanced Administration Guide



Authentication Mechanism (Optional; PP(set sasl_ldapdb_mech)): This allows
configuration of the SASL mechanism which the MTA will use when binding to the DSA
to perform authentication of clients.

Password (Optional; PP(set sasl_ldapdb_pw)): The password to be used when binding
to the DSA.

ID for SASL Bind (Optional; PP(set sasl_ldapdb_id)): The SASL ID to be used
when binding to the DSA.

DN for Simple Bind (Optional; PP(set sasl_ldapdb_dn)): The DN to be used when
binding to the DSA using simple (i.e. non-SASL) authentication.

4.1.5 Authorization

The Rules and Groups which can be configured on the Authorization tab of MConsole
control various aspects of the Queue Manager’s handling of incoming connections and
messages.

Full descriptions of Rules, Groups and Rule Filters are given in  M-Switch Administration
Guide.

4.1.6 Queue Manager

Items configured in the Queue Manager tab of MConsole configure the way the Queue
Manager controls many of the activities of the MTA for which it is responsible.

Values are in seconds unless otherwise specified.

Full descriptions of the QMGR Parameters are given in  M-Switch Administration Guide.

4.1.7 Security

These values configure the way in which M-Switch uses supports authentication. This
includes:

• SOM client connections to the Queue Manager

• SMTP client connections the SMTP Server

4.1.7.1 TLS Configuration

Enable TLS for SOM Protocol (Optional; PP(set qmgr_tls)): Set this to "1" to enable
use of TLS for SOM connections.

Path for TLS identity files (Optional; PP(set tls_path)): Path for TLS identity files
containing Digital Identities. This is used by both the Queue Manager and SMTP server
processes.

Name of PEM file containing CA certificates (Optional; PP(set tls_cafile)): To
set the location of the PEM file used to hold the list of trusted Certificate Authorities. This
is used by both the Queue Manager and SMTP server processes.

4.1.7.2 SASL Configuration

Enable SASL for SOM protocol (Optional; PP(set qmgr_sasl)): Enable the use of
SASL for SOM connections.

Disable SASL PLAIN and LOGIN: (Optional; PP(set qmgr_sasl_noplain)): This
option specifies whether plaintext SASL mechanisms (PLAIN, LOGIN) are allowed for
SOM connections.

Example of SASL and SOM configuration:

Table Based Configuration

20M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#SecuringMsgSystem_02
../swadm/SWADM.pdf#SecuringMsgSystem_02
../swadm/SWADM.pdf#ConfigMTAs_01_05


    set qmgr_tls=1
    set tls_path=/opt/tls-id
    set tls_cafile=file.pem
    set qmgr_sasl=1
    set qmgr_sasl_noplain=1

4.1.8 Advanced (including internal variables)

These are a miscellaneous set of variables which configure a range of M-Switch properties
which are either not usually necessary to configure or do not fit into the other sets of
variables.

Admin alt. recipient (Optional;
Tailor(administration_assigned_alternate_recipient)): This variable allows
an undeliverable local address to be redirected to the user given here, provided the originator
has allowed this. The value should be in RFC 822 format. Possible uses of this feature
might be to deliver all failed messages to the postmaster for advice, or to deliver to a special
program that returns fuzzy matches. It is important that the users (or processes) to which
undeliverable messages are redirected ensure that all such message originators are notified
that the message has not been delivered to the intended recipient, as this redirection is used
instead of the normal message report indicating delivery failure.

Archive (Optional; PP (set archive_dir)): The directory where the MTA writes archived
messages. This can contain H and %M, which are replaced with the date, hour and minute
of the time of the archiving. Archiving can be used in conjunction with the Message Audit
Database so that message content can be displayed when using Message Tracking.

Example mtatailor entry:

set archive_dir=/var/isode/archive/%D

Channel address (Optional; PP(set qmgr_chan_address)): This configures the address,
in <host>:<port> format, on which the Queue Manager listens for channels.

Example mtatailor entry:

set qmgr_chan_address="localhost:18001"

Configuration reload interval (Optional; PP(set qmgr_config_time)): This is the
time interval use by the Queue Manager to check if the Directory configuration has been
updated and that a new mtatailor file needs to be created. (The Queue Manager reads the
mt_serial attribute to do this).

Discard probes (Optional; PP(set discard_probes)): This causes all probes (X.400
messages with no content) to be discarded and no report generated.

Example:

set discard_probes=true

DSA address (Optional; Tailor(dsa_address)): This configures the Presentation Address
used to connect to the Directory.

Examples:

dsa_address TELEX+00728722+RFC-1006+03+127.0.0.1+19999
dsa_address /Internet=127.0.0.1+19999

Table Based Configuration

21M-Switch Advanced Administration Guide



dsaptailor (Optional; Tailor(dsap_tailor)): The configures a dsaptailor file to use to
configure Directory access in place of the default.

Example

dsaptailor /etc/isode/dsaptailor

Fsync (Optional; Tailor(fsync)): This is a boolean variable which controls the use of the
fsync (2) call for unlocking files which have been locked using the flock , fcntl or lockf
lock styles. fsync is normally used when critical files are written before passing back a
handshake over protocol. However, it can be switched off by a value of no if you consider
that it is too expensive.

Example:

fsync FALSE

Hard disk space to leave free (Optional; Tailor(diskuse)): This parameter is used to
limit the disk space consumed by the MTA, by setting the disk space that should remain
free. It is measured in megabytes. This can be disabled by setting the value to zero.

Hard disk percentage to leave free (Optional; Tailor(diskuse)): This parameter is used
to limit the disk space consumed by the MTA, by setting the percentage of the disk space
that should be free. This can be disabled by setting the value to zero.

The two figures presented by Mconsole are combined into a single tailoring variable. The
disk that is checked is the partition holding the queue ( quedir ).

Example:

diskuse 1024 95

Isode variables (Optional; Isode()): This allows arbitrary Isode tailoring variables (i.e.
those found in the isotailor file) to be overridden.

Example:

isode threads 2

Log directory (Optional; Tailor(logdir)): This configures the directory in which M-Switch
is to write log files. This overrides the default value and values in isotailor.

Example:

logdir /var/isode/newlog

No delete (Optional; PP(set no_delete)): This variable allows messages with which
M-Switch has completed processing for all recipients to be preserved in the queue. This is
usually only of value when attempting to solve a problem with a particular message. If
unset, messages are deleted by whichever channel happens to set the status of the final
recipient to "done".

Example:

set no_delete=true

Table Based Configuration

22M-Switch Advanced Administration Guide



Operation rate time (Optional; PP(set qmgr_oprate_time)): This sets the smoothing
time for calculation of the operation rate - i.e. the period over which the operation rate is
averaged.

Example:

set qmgr_oprate_time=1.1

Prevent return of contents (Optional; PP(set prevent_roc)): Setting this to "true"
causes the P3 and x400p1 channel never to return content when generating non-delivery
reports. I t also forces the X.400 value "content-return-request" to "false" in
messages, and message being sent of SMTP will have RET=HDRS.

Example:

set prevent_roc=true

4.1.8.1 PP Internal variables

Values configured here allow arbitrary, extensible values to be configured internally to the
MTA, of which Mconsole is unaware. Possible values, some of which are configured by
Mconsole, are described elsewhere in this section.

The following is a list of possible values which may be used:

• allow_duplicates : By default duplicate recipients are removed. Setting this variable to
any value allows duplicate recipients to be retained.

• default_p1bind_password: If the password is not present in the configured credentials
to be used in a P1 bind, the default of " " (single space) is used. This allows a different
value to be used. Specify " " (i.e. two double quotes and an empty string) to configure
a zero length password. Note: M-Switch treats single space and a zero length password
as matching when verifying P1 bind credentials.

• internal_cache_size: All M-switch programs which carry out Directory lookups when
performing Directory-based routing have an internal cache of the result of the lookup.
This variable allows the size of this cache to be configured. The default is 10000.

• internal_cache_timeout: All M-switch programs which carry out Directory lookups
when performing Directory-based routing have an internal cache of the result of the
lookup. This variable specifies the age limit in seconds of items read from this cache to
be configured. The default is 300 (seconds).

• local_deref_alias: The Directory based routing depends on dereferencing aliases in the
Directory. Some non-Isode Directories do not dereference the alias. If set to TRUE, this
variable forces the M-Switch lookup code to attempt to dereference the alias itself.

• mixer_space_replace : The first character of the value is used to replace spaces when
generating string forms of OR addresses for use on the Internet side of a MIXER gateway.

• no_nicepn : Do not use the encoding of personal name in a MIXER gateway which is
defined in RFC 2156 4.1.2.

• nocheckcontent : When the MTA is configured to perform content checking (e.g. for
viruses or spam), certain content types can be exempted so they are not checked. The
value is a list of content type for example:

set nocheckcontent=p2,p22,oid.1.3.26.0.4406.0.4.1

• PASSWD: On Unix platforms, channels (such as 822-local) which need to read the
passwd file to perform authentication by default use /etc/shadow. The name of the file
can be overridden by this variable.

Table Based Configuration

23M-Switch Advanced Administration Guide



• pn_separator: Change the separator used in the RFC 2156 4.1.2 encoding of personal
names.

• RESPATH : Used by the 822-local channel on Windows.

• USRPATH : Used by the 822-local channel on Windows.

Queue depth (Optional; Tailor(queuestruct)): The level of sub-directories to create in
the message queue directory.

Queue fan out (Optional; Tailor(queuestruct)): This specifies the fan out of the queue.

The two fields which MConsole allows you to set are combined into a single tailoring
variable which is used to control the structure of the queue. This is only useful to change
if you are expecting very large queues (>2000 messages in the queue at one time.) It takes
two numbers. The first number specifies the fan out of the queue. With a value of 100 ,
messages will be put in 100 sub-directories of the main queue file. This cuts down the
searching of the main directory but is only useful for very large queues. The second optional
number is the level of sub-directories to create. By default this is one, indicating an
indirection of one directory. Again this parameter should not be changed unless extremely
large queues are expected (>50,000.). Example to configure a Queue Fan Out of 1, and a
Queue Depth of 15:

queuestruct 1 15

Queue directory (Optional; Tailor(queuedir)): Override the default location of the
M-Switch Queue Directory where the MTA keeps the messages it is holding on disk. It
needs to be an absolute pathname. Example:

quedir /var/isode/switch

Redirect on routing failure (Optional; PP(set redir_routing_failure)): Redirect
messages to admin-assigned-alternate recipient on Routing Failure. Example:

set redir_routing_failure=true

Set environment variable (Optional; Tailor(setenv)): This allows setting of environment
variables. The syntax is setenv key = value . Example:

setenv MY_ENV_VAR=my_value

SOM address (Optional; PP(set qmgr_som_address)): The host and port on which the
Queue Manager listens for requests from SOM clients. Example:

set qmgr_som_address="somhost.example.com:8888"

System mailfilter (Optional; Tailor(mailfilter)): Sets the default name of the system
mailfilter file used by the 822-local channel.

Table directory (Optional; Tailor(tbldir)): This configures where M-Switch searches
for tables which are held in filestore (i.e. those tables which have a flags value of dbm or
linear). Example:

tbldir /var/isode/table

Table Based Configuration

24M-Switch Advanced Administration Guide



Trash lifetime (Optional; PP(set trash_lifetime)): Non-message files older than this
lifetime are deleted from the Queue. Expressed as <integer><units> where units are:
s: seconds; m: minutes; h: hours; d: days. Example setting to 30 minutes:

set trash_lifetime=30m

Unset environment variable (Optional; Tailor(unsetenv)): This allows unsetting of
environment variables. The syntax is unsetenv key = value . Example:

unsetenv MY_ENV_VAR=my_value

X.400 MTA (Optional: Tailor(x400mta)): The sets the MTA name used to represent this
MTA in tracing fields. Example:

x400mta tracemtaname

4.1.8.2 Tailor Variables Not Configurable in Mconsole

default_lookup_timeout : The default time in seconds to spend on non-table lookups (i.e.
Directory and DNS). The default is 30 seconds.

lockstyle: This is the style of locking to be used when it is necessary to lock a file. It may
be one of the following:

Table 4.1. lockstyle

MeaningValue

Use the flock (2) system callflock

Use the fcntl (2) system callfcntl

Windows file lockinglocknt

The default style on Unix is flock but may be changed if you have doubts about the
interaction of flock (2) and NFS . This is a run time configuration variable, and it will
depend on what platform you are running as to whether all the above will be supported.
The file locking mechanism will always be available, though.

timeout_retry_interval: This is described under returntime in the previous section,
and is expressed in seconds.

4.1.9 Table Entries

This section describes how the tables of aliasing and addressing information, referenced
by the channel programs, are defined in the mtatailor file.

Generally each table's entry is comprised of a line with several key/value pairs. The line
starts with the keyword tbl which is followed by a string setting the default name for the
table and the plain text file in tbldir . Then come the key/value pairs, described below.

name=<value>: Name this table with the given value (to override the default - see above).
This is included only for completeness as it is set by first argument; it is not normally used.
The name is used in all references to the table.

file=<value>: The tables contents are found in the given file (to override the default).

show=<value>: A descriptive string used when printing messages about this table, mainly
for logging purposes. It defaults to the same as the table name.

Table Based Configuration

25M-Switch Advanced Administration Guide



flags=<value>: A set of flags that specifies how this table operates. It should be one of the
following:

• dbm: This table is stored in the database for fast access (the default).

• linear: This table is searched with a linear pass through the file in tbldir (this is
slow, but does not require rebuilding the database, and changes take immediate effect).
Linearly searched files are still built into the database.

• empty: This flag which indicates there is no file associated with the table.

override=<value>: This allows values in the table to be overridden, or indeed if the table
is small the whole table to be specified in the mtatailor file. Each occurrence of this keyword
adds a new key/value pair to a list. The format should be exactly the same as in a file with
a key, a colon character (:) and a value.

An example of table tailoring is shown below:

tbl aliases show="Aliases: mapping -> local id",
flags=dbm, file=local-aliases
tbl domain show="Mapping domain key -> full domain/MTA",
flags=dbm, override="widget.co.uk:local"
tbl or show="Mapping O/R Address -> MTA",flags=dbm,
tbl or2rfc show="RFC 987: X.400 -> RFC 822", flags=dbm
tbl rfc2or show=" RFC 987: RFC 822 -> X.400",flags=dbm
tbl channel show="Binding MTA -> Channels",flags=dbm
tbl auth.qmgr show="Queue Manager authorization",flags=linear

4.2 Channels

Channel Tailoring

Channels are perhaps the most complex aspect of tailoring. There are several types of
channels. Input channels carry messages into the system. Output channels carry messages
out of the system. Reformatting channels change the message structure in the queue. Checker
channels scan messages for viruses and spam. Housekeeper channels generate Delivery
Reports, DSNs and warning messages, and carry out other Switch maintenance tasks.

Each channel entry in the mtatailor.tai file consists of the keyword chan followed by a
value which, by default, names the channel and the program associated with it. This is
followed by a list of key/value pairs which provide more information on the channel.

A number of the values can be applied to a pair of channels differently depending on
whether the channel is being used in outbound or inbound mode. Where the distinction is
significant, there are separate tailor variables prefixed by in and out.

Channel configuration is normally performed using MConsole, and for that reason the
descriptions of channel tailoring variables are presented in groups which match the various
tabs on MConsole’s Channel Properties pane, with the labels used by MConsole and the
corresponding mtatailor key name where different from the MConsole label.

4.2.1 Main

Channel Name : the name of the channel. Corresponds to the value after the chan keyword
in the mtatailor.tai file.

Table Based Configuration

26M-Switch Advanced Administration Guide



How it appears in the logging : a short phrase describing the channel. If this string starts
with the keywords with or via then this value is included in Received lines generated for
RFC 822 messages.

Description : longer description of channel. Stored in the Directory only and not used by
the MTA.

Channel Type : corresponds to the type keyword. This parameter is mandatory and indicates
the type of channel this is. This must be set to one of the values shown below:

Table 4.2. Channel Type

Type of ChannelValue

An incoming channel.in

An outgoing channel.out

Both incoming and outgoing.both

A channel which performs message checking.check

A channel which performs general MTA housekeeping.housekeeper

A channel which performs message conversion.shaper

MConsole further restricts the available set of choices for this field, depending on the nature
of the channel being edited.

Access : The type of access this channel requires; the value is either mta , in which case
the channel must be run by a trusted userID, or else mts in which case authentication of
messages is enabled. The default is mta. To explain more fully the implications of the
value set here:

• If the program that is run for the channel is setuid, and the channel is not access=mts,
an error is reported.

• If access=mts and type=out or type=both, then the owner needs to be root (otherwise
it needs to be the ppuser).

• If access=mts and type=out or type=both, and the program is not setuid, a warning
is given. Basically if the program is setuid root, the channel needs to be access=mts
and vice-versa.

Basically if the program is setuid root, the channel needs to be access=mts and vice-versa.

Outbound Protocols : This is a list of application contexts the channel can transfer, and
corresponds to the appcont keyword. This field can only be set for a protocol channel.
Where a protocol channel can only handle one application context, the value is simply
displayed, and cannot be modified. This parameter configures the ways in which the channel
can connect out to an external MTA

The values which appear in the mtatailor.tai file are the string representations of the Object
Identifiers defining the application contexts, as follows:

Table 4.3. Outbound Protocols

MeaningOIDValue

X.400 P1 1988 transfer2.6.0.1.6P1 (normal)

X.400 P1 1988 X.410 mode transfer1.3.6.1.4.1.453.5.5P1 (1988) X.410

X.400 P1 1984 mode transfer1.3.6.1.4.1.453.5.1P1 (1984)

P3 delivery2.6.0.1.1P3

SMTP message transfer1.3.6.1.4.1.453.5.2SMTP

Channel uses MTS Gateway API for message
transfer

1.3.6.1.4.1.453.5.8MTS Gateway

Table Based Configuration

27M-Switch Advanced Administration Guide



MeaningOIDValue

Channel uses P1 File convention for message
transfer

1.3.6.1.4.1.453.5.7P1 File

ACP142 message transfer1.3.6.1.4.1.453.5.9ACP142

4.2.2 Programs

Program to run: The program associated with this channel, i.e. the actual binary to run
(overrides the default value, which is the channel name). Corresponds to the prog keyword.
May include command line arguments to be passed to the channel process.

Key : A list of keys (comma separated) by which this channel is known. This can be used
to map several logical channels onto one. See Section 2.4, “Channel Pairing”. Note that a
key is an equally valid way to refer to a channel. When referencing a channel, the first
match on key or name is taken. If specifying several keys, the entire value should be
enclosed in quotes. Channel program-specific settings can also appear on the Program tab:
these are described in the appropriate sections below.

4.2.3 Tables

Intable : A table associated with the inbound part of this channel.

Outtable : A table associated with the outbound part of this channel. This is used by the
channel program, in a channel specific way. Not all channels require this.

4.2.4 Inbound

The contents of the Inbound tab will vary depending on the type of channel being configured,
so some of the fields listed below may not be present for a specific channel instance. The
whole tab may be absent if there are no fields which are relevant to the channel being
edited.

MTA Name : Used in P1 and P3 Simple Bind requests and responses, when using
Directory-based configuration. If not set, will default to the value configured for the Switch
as a whole. Not stored in the mtatailor.tai file. For SMTP channels, this value is used by
other Isode MTAs which are reading this Directory entry when working out how to connect
to this SMTP inbound channel: the MTA Name value is subsequently looked up in DNS.

Global Domain Identifier : This is used when verifying a Strong Authentication token,
if used.

Command : The executable which provides the inbound component of the channel. If a
relative path (or no path at all) is specified, it is taken to be relative to (EXECDIR). Not
stored in the mtatailor.tai file.

Presentation Address : This is the OSI address on which the inbound component of the
channel (if any) will listen. Required only for P1, P3 and ACP142 channels. Not stored in
the mtatailor.tai file.

Calling Presentation Address: This field allows the Transport, Session and Presentation
selectors which are included in the Transport, Session and Presentation connect packets
when opening an OSI connection to be specified. If a Network Address is specified and
TCP/IP is being used as the Transport layer, then the Initiator will be bound to the specified
IP address - this is intended to allow a specific interface to be chosen in a situation where
a the Switch system has multiple interfaces. Specification of an invalid Network Address
will thus prevent any outbound connections from being established (as the ‘bind’ operation
will fail). This information is not stored in the mtatailor.tai file.

Application Context: Specifies the protocols which this channel provides to external
MTAs. This field is only displayed for X.400 P1 channels, where there is a choice of P1

Table Based Configuration

28M-Switch Advanced Administration Guide



variants which can be provided. Note that this information is not stored in the mtatailor.tai
file.

Reroute to another MTA: This field is only displayed for X.400 P1 channels. It allows
all messages queued on the channel to be rerouted to a specific Peer MTA/Channel
combination. This information is not stored in the mtatailor.tai file.

Associated Domain : For Internet Routing, gives the hostname to connect to when
attempting to transfer messages to this MTA.

MTA Password : The password used in P3 Bind requests and responses. Not stored in the
mtatailor.tai file.

4.2.5 Auth

The Auth tab is only present for OSI protocol channels. Its contents vary depending on
whether a P3 or P1 channel is being configured.

P3 Initiator Authentication Requirements : These are the checks which are carried out
by the P3 Initiator on the Responder's credentials. It is possible to specify that the MTA
Name must be present, the Application Entity Title (AET) is present, the AET is valid, the
Network Address is correct, that Simple Authentication succeeds, that Strong Authentication
succeeds and that a Bilateral Agreement is present for the Initiator/Responder pair. Not
stored in the mtatailor.tai file.

P3 Inititator Authentication Requirements : These are the checks which are carried out
by the P3 Responder on the Initiator's credentials. Not stored in the mtatailor.tai file.

P7 Message Store : This can be set to be the Distinguished Name of a specific Shared
Message Store, and if set in this way will prevent the P3 channel from being used to deliver
into other Message Stores. Not stored in the mtatailor.tai file.

P1 Initiator Authentication Requirements : These are the checks which are carried out
by the P1 Initiator on the Responder’s credentials. Not stored in the mtatailor.tai file.

P1 Responder Authentication Requirements : These are the checks which are carried
out by the P1 Responder on the Initiator’s credentials. Not stored in the mtatailor.tai file.

Initiator RTS Credentials : These are the credentials to be used in a P1 bind request when
connecting to another MTA. Both the MTA Name and Password can be specified: if the
MTA Name is not set, it defaults to the MTA Name configured for the Switch as a whole.
Not stored in the mtatailor.tai file.

Responder RTS Credentials : These are the credentials to be used in a P1 bind response
when this MTA responds to another MTA’s bind request. Both the MTA Name and
Password can be specified: if the MTA Name is not set, it defaults to the MTA Name
configured for the Switch as a whole. Not stored in the mtatailor.tai file.

4.2.6 RTSE

The RTSE tab is only present for X400 P1 channels, and allows configuration of parameters
specific to Reliable Transfer. This is described in detail in M-Switch Administration Guide.

4.2.7 MTA Links

The MTA Links tab is only present for X400 P1 channels.

MTA Name Links : This provides the mapping between the MTA Name in an incoming
Bind Request and the entry in the Directory which holds the configuration information for
the calling MTA. If a Bind Request arrives with an MTA Name which is not present in
this table, then the bind will be rejected. After adding a new X.400 MTA to your

Table Based Configuration

29M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#ConfigMTAs_02_01_02


configuration (whether a local Tailoring MTA or an External MTA), you will need to make
sure that your Links tables are updated.

4.2.8 ACP142 In, Out and Param Tabs

These tabs are present only for ACP142 channels, and are described in  M-Switch
Administration Guide.

4.2.9 Advanced

The Advanced tab is used for general configuration items common to many channels.
Emitted formats: The type of addresses which are generated by this channel. Corresponds
to the adr keyword in the mtatailor.tai file. The value is one of those below:

MeaningValue

X.400 addressingX.400

rfc822 addressing822

either of the above typesany

Boundary-ACK : For outbound channels, controls acknowledgement generation and
requests.

Bodyparts in : A list of X.400 EITs (up to a maximum of 28) that the channel will accept.
Should be left empty for non-X.400 channels. Corresponds to the bptin keyword in the
mtatailor.tai file.

Bodyparts out : A list of X.400 EITs (up to a maximum of 28) that the channel will output.
Should be left empty for non-X.400 channels. Corresponds to the bptout keyword in the
mtatailor.tai file.

Check for Bad Sender : This can be set to one of the following keys to control the policy
for unroutable or unreplyable sender addresses:

MeaningValue

Generate delivery report (default)reject

Artificially route on failure.accept

It is strongly recommended that the default policy, reject, is used. This will fail messages
that arrive with an unroutable or unreplyable sender specification. If this is overridden,
messages can easily be lost if any failure occurs.

If the accept mode is in effect, the MTA will attempt to route failure messages for
unroutable senders either via the inbound MTA or if that fails to postmaster. This
configuration item corresponds to the bad-sender-policy key in the mtatailor.tai file.

Check for Bad Message: This sets the checking mode of the channel. Normally this should
be left as the default, which is strict checking, i.e. reject. However, for unusual cases it
may be required to relax some of the constraints normally imposed. Setting the mode to
accept will reduce the strictness of the checking to some extent. In particular it will allow
RFC 822 messages with no, or multiple Date fields to be accepted. It has no effect for
X.400 messages. Corresponds to the check keyword in the mtatailor.tai file.

Content In: This should only be set for shaper and checker channels, and specifies the
types of content which the channel can handle. Corresponds to the content-inmtatailor.tai
keyword. Common values are:

MeaningValue

A content of the form X.400 (84) IPMp2

Table Based Configuration

30M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#ConnectMilitaryX400MTAs_01_03
../swadm/SWADM.pdf#ConnectMilitaryX400MTAs_01_03


A content of the form X.400 (88) IPMp22

A content suitable for transfer over an RFC-822 protocol (i.e.
one header and one text bodypart)

822

Content Out: Content out tailoring only applies to outbound channels, and lists the content
types the channel can transfer. Available values are the same as for the Content In field.
If left blank (i.e. set to none) this indicates that the channel is content independent.
Corresponds to the content-out mtatailor.tai keyword.

Channel Specific Variables : This allows variables with arbitrary names and values to be
set for an individual channel.

add-prio-qualifier : Variable applies to inbound channels. It is used to add the military
messaging qualifier to the message envelope, with the value ‘high’. If the qualifier is already
present (with either value) then no action is taken. The value for the variable is a
comma-separated list of the names of the priority levels for which this action should be
taken. E.g.

add-prio-qualifier=normal,non-urgent

The other variables available to each channel executable are documented later in this section
of the manual.

Connection Hold Time : Configures the length of time (in seconds) for which protocol
connections are held open by outbound channels when there are no messages to transfer
or deliver for the connected Peer MTA. Corresponds to the conholdtime mtatailor.tai
keyword.

Domain Normalization: The amount of domain normalization of MTS addresses on
inbound channels. Corresponds to the domain-norm mtatailor.tai keyword. The value is
one of those below (the default is partial ):

MeaningValue

all domains in an MTS address are normalizedfull

only the next hop of an MTS address is normalizedpartial

With partial local domains are recognized and skipped, so the first non-local domain will
be normalized.

Subtype in: This should be set for inbound channels only. Corresponds to the subtype-in
keyword. Configures a content subtype which is used to control content conversion.

Subtype out: This should be set for outbound channels only. Corresponds to the
subtype-out keyword. Configures a content subtype which is used to control content
conversion.

Lookup policy for inbound messages: The lookup policies to use for messages coming
in by this channel. It can take any of combination of the values specified in Lookup Policies.
Corresponds to the lookup tailoring key.

If the optional prefix is specified in any of the policies, it will be prepended to the standard
tables: domain, or, channel, aliases and users. For example, if the policy is
table=eg then the tables that may referenced when evaluating that policy are eg-domain,
eg-or, eg-channel, eg-aliases and eg-users.

Lookup timeout: The time in seconds to spend on non-table lookups. Corresponds to the
timeout tailoring key. The default value is 30 seconds.

Table Based Configuration

31M-Switch Advanced Administration Guide



Maximum channel processes: This is the maximum number of instances of the channel
the Queue Manager is allowed to run at any time. A value of 0 (the default) indicates that
there is no maximum. Corresponds to the maxproc tailoring key.

MTA: A destination MTA for this channel. If this is set, all messages will be delivered to
this MTA regardless of the destination MTA given in the message. This is useful for relaying
all messages for a given channel via another MTA.

Maximum inbound connections: The maximum number of inbound connections to
(instances of) this channel which are to be permitted. Corresponds to the maxinconn
tailoring variable. The default is to allow unlimited inbound connections.

Maximum outbound connections: The maximum number of outbound connections from
instances of this channel which are to be permitted. Corresponds to the maxoutconn
tailoring variable. The default is to allow unlimited outbound connections.

MTA Report Request: Controls the setting of the mta report request for recipients. If the
value set here is ‘less’ than the user report request, then the mta report request is increased
to match the user request. Valid values are:

• basic : non-delivery reports requested

• confirmed : delivery reports requested

• audit-&-confirmed : delivery reports and subject trace information requested

Sort Key (primary): Sort keys are used to group "like" messages in order to make message
processing more efficient. The primary sort key must be mta, user or none. The value none
should only be used as a primary sort key for delivery channels.

Sort Key (secondary): Once the Primary Sort Key has been used to group messages, the
Secondary Sort Key can be used to sort within these group. The values for this field can
be time, size or none. For an outbound channel, the Primary Sort Key of "" "none" and
"mta" are basically the same. This has been kept for historical reasons.

Within the mtatailor.tai file, the Primary and Secondary sort key values are combined in
a single tailoring entry of

sort="<primary key>[ <secondary key>]"

By default, all outbound channels are sorted by mta only. Local channels should be sorted
by user . Reformatters and other channels are normally sorted by none . However, setting
a reformatter to mta or user allows multiple instances of the same channel to run
concurrently.

4.2.10 Channel Specific Configuration

4.2.10.1 X.400 P1 Channel

The X.400 P1 channel uses the same program, x400p1, for both inbound (responder) and
outbound (initiator) transfers. In addition, two-way alternate mode of operation can be
configured, allowing the channel to operate as both sender and receiver over a single
association.

The X.400 P1 channel can be started in different ways and with different options depending
on the mode of operation required. These are summarized in the following subsections.
Starting the channel for testing or debugging purposes in covered in Non-standard Use of
the X.400 Channel. An example of an X.400 channel entry in the mtatailor.tai file is shown
below.

Example of X.400 channel entry in mtatailor.tai file

Table Based Configuration

32M-Switch Advanced Administration Guide



chan X.40088 show="X.400 (1988)", type=both, adr=X.400,
name=X.40088, key=X.400in88, intable=X.400in88,
prog="x400p1 -i -te -fx400p1i",
content-out="p2,p22",hdrout="p22,p2,ipn",
outtable=X.400out88,probe=y,
appcont="2.6.0.1.6",outlookup="table",
inlookup="table",
bptout="ia5,g3fax,external,bilateral,
undefined,ttx,videotex,national,
encrypted,tif1"

The following fields specific to the X.400 P1 channel appear on MConsole’s Program tab.

Allow P1 binds with invalid X.509 Subject DNs: corresponds to the
x509_allow_inv_aet tailoring variable. When performing validation during Strong
Authentication, the AET of the other party is normally checked against the Subject in their
certificate. If this parameter is set to ‘yes’, the check is disabled.

X.509 Parent Directory: corresponds to the x509_id tailoring variable. Configures the
directory path where the channel looks for its security environment when initializing prior
to the use of Strong Authentication. If unset it defaults to the same directory as the Switch's
tables.

Name of PKCS12 file: corresponds to the x509_x400p1_p12_fname tailoring variable.
Configures the full directory path of the channel's P12 file.

Name of the passphrase file (to access the PKCS#12) : corresponds to the x509_pphr
tailoring variable. Configures the passphrase needed to decrypt the PKCS12 file.

Directory in which trusted CA certificates are held: corresponds to the
x509_x400p1_trusted_ca_dir tailoring variable.

4.2.10.1.1 Configuring the X.400 channel for Initiator mode

The channel is started by the Queue Manager using the values set in the prog field of the
channel entry in the mtatailor.tai file. The values set may include the following:

x400p1 -i [-te|d] [-r|-s] [-f<logname>]

-i: Start as initiator. This value is mandatory.

-t <suboption> : The value of suboption can be either e to enable, or d to disable TWA on
all connections. The value given here will override the value of the mode field in the channel
table for the MTA. If not set the value in the channel table is used.

-r: Disable use of checkpointing and recovery facilities. If this option is not specified, the
channel will attempt to resume the transfer of a previously aborted message.

-s: Enable saving of checkpoint data as the message transfer proceeds. The -s flag provides
additional protection in the case of a system crash, as the necessary checkpoint data will
always be saved.

-f <logname> : use the value logname when logging. If not specified, the program name
x400p1 is used by default.

4.2.10.1.2 RTSE Tab in MConsole

MConsole’s RTSE tab allows various aspects of the way in which the X.400 channel
connects to other MTAs to be configured.

Table Based Configuration

33M-Switch Advanced Administration Guide



The initiator settings are used by the channel when initiating a connection to another MTA;
the responder settings are used by the channel when responding to an incoming connection
from another MTA.

Mode: Two-way alternate (TWA) means that messages are sent and received on the same
connection. Monologue means that once connected, messages are sent only one way: from
the Initiator to the Responder.

Window: This is the number of checkpoints to go through before an acknowledgement is
sent. If there is a failure in sending information across a network, the connection will be
able to resend from the last checkpoint.

Checkpoint: This defines the number of bytes in a ‘checkpoint’.

RTS Transfer Timeout: The value is an integer, whose units are seconds per kilobyte,
i.e. the actual timeout used is based on the size of the message. In this context, message
size will include the surrounding layers of protocol information, and does not simply reflect
the size of the message content and envelope. The default setting is zero, which implies
waiting forever for a response. If message transfer fails because of the timeout, then the
message will be tried again.

Note that you may also wish to set the rtse_rec_timer Isode variable at the same time.

X.400 Tracing: the style of tracing information to include in the envelope of messages
transferred out by the channel.

Options are:

• ‘All’, meaning that all trace elements are included

• ‘ADMD’, which only includes trace elements relating to transfer between ADMDs

• ‘NIST’, which is as for ‘ADMD’, but with the domain identifier set from the
MTSIdentifier of the message

• ‘No internal’, which means that no internal trace elements are included and ‘Local
internal’, which means that only internal trace information elements corresponding to
the global domain of the MTA are included.

OR-Address Downgrade: This causes ORAddresses to be downgraded according to
ISO/IEC DISP 12072–1 Annex C.

Use of rtse_rec_timer Variable

The rtse_rec_timer Isode variable controls the timeout which will be applied when
waiting for the final acknowledgement from a X.400 P1 responder when a message transfer
has been made. This is in addition to any RTS Transfer Timeout value; however the
rtse_rec_timer value will only be used if an RTS Transfer Timeout has been set.

X.400 Bilateral Agreements

A Bilateral Agreement describes a set of overrides for a specific pair of X.400 MTAs which
override the default values held in each of their individual entries. They are described in
detail in the M-Switch Administration Guide.

MTA Links

With a Directory-based configuration, ‘MTA Links’ provide the mapping between the
MTA Name field in an incoming P1 Bind Request and the Directory entry which contains
the (local) configuration of information about the remote MTA. This is described in detail
in the M-Switch Administration Guide.

X.400 Permanent and Scheduled Associations

These are described in detail in the M-Switch Administration Guide

Table Based Configuration

34M-Switch Advanced Administration Guide



X.400 Associations Limited by Priority

This is described in detail in the M-Switch Administration Guide.

X.400 Differentiated Service Code Point (DSCP)

This is described in detail in the M-Switch Administration Guide.

4.2.10.1.3 Strong Authentication

Strong Authentication is used by the X.400 P1 Initiator if the Peer MTA to which connection
is being attempted includes Strong Authentication in its Authentication Requirements.
Simple Authentication and MTA Name Present can also be selected – the P1 Initiator
will attempt strong authentication first if both strong and simple authentication are selected.

You can now configure the security environment for the X.400 P1 channel. This is shown
in the diagram below, and described after that.

Figure 4.1. Configuring the X.400 P1 security environment.

There are five variables which can be configured. Some of these are mutually exclusive.
You can configure the security environment by specifying a Digital Identity and a directory
which contains trust anchors. Alternatively there is an obsolescent configuration in which
a directory is specified which contains an X509 subdirectory which contains Digital
Identities and trust anchors. The first Digital Identity found whose subject matches the DN
of the channel is used. This latter method of specifying the security environment is
deprecated and will be withdrawn in future releases.

Allow P1 Binds with Invalid X.509 Subject DNs
The default of No means that Strong Binds using an X.509 Certificate whose Subject
DN does not match the DN in the Bind, are not allowed.

X.509 Parent Directory [Obsolescent and deprecated]
X509 Security Environment: this must be the name of a directory which contains a
subdirectory named x509. This subdirectory must contain the X.509 PKCS#12 files
which contain the digital identity to be used to generate the credentials used in a strong
bind.

The Digital Identity used is the first one found which matches the DN of the entry of
the X.400 P1 channel in the Directory which can be opened using the passphrase.

If not set, the default used is:

/etc/isode/switch
  C:/isode/etc/switch

Table Based Configuration

35M-Switch Advanced Administration Guide



These examples give the default values in the absence of this channel specific variable.

Unless the Digital Identity contain an unprotected private key you must configure the
X.509 Digital Identity passphrase. The passphrase must be in a file in the same directory
as the PKCS#12 file. The name of the file which must contain the passphrase is
<p12filename>.p12.pphr

Warning: You should use the other values to configure the security
environment. Use of this feature will be removed in a future release.

Name of PKCS12 file
Enter the pathname of a Digital Identity (PKCS12 file) to be used for constructing
strong credentials.

Directory in which trusted CA certificates are held
The name of a directory which contains DER files to be used as trust anchors.

Name of the passphrase file (to access the PKCS#12)
This specifies the file that contains the passphrase needed to access the private key in
the PKCS#12 file. If this is not configured, a default file path is used.

Allow Invalid DNs in Bind
If you check AET Valid in the Authentication Requirements then the X.400 P1
channel will not only ensure that the AET in the bind is valid (by reading the DN to
retrieve the configuration of the remote MTA) but also check that the subject DN in
the X.509 certificate provided in the bind matches the AET. You can disable the latter
check by selecting Allow Invalid DNs in Bind on the Program tab.

See section Generating digital identities for detailed instructions on how to create a suitable
certificate for the X.400 P1 channel

4.2.10.1.3.1 Creating a CA Using Sodium CA

See the M-Vault Administration Guide to create the initial CA.

4.2.10.2 ACP142 Channel

The ACP142 channel is described in detail in the M-Switch Administration Guide, along
with the contents of the "ACP142 In", "ACP142 Out" and "ACP142 Param" tabs in
MConsole.

The channel uses LDAP to obtain information. It uses the same global LDAP connection
information as is used for routing lookup. The PP variables used are as follows:

ldap_host: Configures the name of the host on which the LDAP server containing the
Switch configuration is running. This will default to ‘localhost’ if not set.

ldap_port: Configures the port on which the LDAP server is listening: defaults to ‘389’.

ldap_sasl_user: Configures the SASL userid to use when binding to the LDAP server

ldap_sasl_pass: Configures the SASL password to use when binding to the LDAP server

ldap_sasl_mech: Configures the SASL mechanism to use when binding to the LDAP
server.

If none of the ‘ldap_sasl’ variables are set, the channel will fall back to use of a simple
Bind using the MTA’s DAP User and DAP password settings.

4.2.10.3 SMTP Channel

The SMTP channel, slmtp , comes in two parts, an inbound and an outbound process.

SMTP Server

Table Based Configuration

36M-Switch Advanced Administration Guide



The SMTP server supports the following SMTP extensions:

Table 4.4. SMTP Channel Extensions

Help information [RFC 1869]HELP

Distribution list expansion (only for X.500 Directory
based lists). [RFC 1869]

EXPN

Message size declaration [RFC 1870]SIZE

8bit-MIME transport [RFC 1652]8BITMIME

Client side pipelining [RFC 2197]PIPELINING

Delivery Status Notifications [RFC 1891]DSN

Enhanced mail system status codes [RFC 1893]ENHANCEDSTATUSCODES

Authentication [RFC 2554]AUTH

The server program for inbound messages makes use of the following channel-specific
tailoring variables:

4.2.10.3.1 In Tab

When Return of Contents is absent, return: allows you to choose whether an absent
ESMTP RET causes ROC (return of contents) to be set when gatewaying the message to
an X.400 network. This corresponds to the absent_ret_roc_full channel-specific
variable.

Maximum message size: allows configuration of the maximum acceptable message size
(in bytes) for remote submission. It is used in the SMTP dialog with hosts supporting the
SMTP extensions. This field corresponds to the amms channel-specific variable.

Allow binary data: configures the channel to accept binary data. Note that the resulting
message will probably be changed. Such a message may also cause problems in processing.
Corresponds to the binary channel-specific variable.

Block all connection attempts: If set, will cause the channel to always block connections.
Corresponds to the block channel-specific variable.

Allow IP addresses with invalid hostnames: if set, then any connection will be allowed.
If this is not the case, connections are only supported from hosts that can be reverse
translated (the IP address, for example, can be converted back to a host name). Some people
consider that setting noname=false is a violation of RFC 1123 (Internet host requirements).
Corresponds to the noname channel-specific variable.

Listening address: by default, the SMTP server will listen on all available addresses, but
can be restricted to a specific address via this configuration option; this might be useful in
the case where the MTA is running on a system which has multiple network interfaces, for
example. Corresponds to the listen_addr channel-specific variable.

Listening port: specifies the port on which the SMTP server is to listen. If not set, defaults
to the standard SMTP port (25). Corresponds to the listen_port channel-specific variable.

Note on 8bit and binary data

The MIME specifications [RFC 2045] make a clear distinction between 8bit data and binary
data. The former can include data with the 8th bit set (byte values 128 to 255). However,
it cannot include the NUL character, nor Carriage Return or Linefeed, except as a CR LF
end of line pair. Also, 8bit data is still subject to the SMTP line length restriction of no
more than 998 bytes between CR LF pairs.

This makes 8bit data unsuitable for the transfer of arbitrary binary data.

Table Based Configuration

37M-Switch Advanced Administration Guide



The SMTP server prevents the transfer in of binary data, unless the ‘binary’ option is set
(the line length restriction is not applied). As a result of the way messages are handled
within the Message Switch, data that violates the 8bit constraints may be changed, and also
cause problems with operation of the Message Switch.

Note that 8bit data is only permitted within MIME body parts. It is not permitted to have
non-ASCII characters within message or body headers. This is because there is no
mechanism for assigning a character set to such characters. The same byte value corresponds
to different characters in different character sets. Note that MIME provides a mechanism
for encoding non-ASCII characters within heading fields [RFC 2047]. The presence of
8bit characters in message headers can cause problems in the operation of the Message
Switch.

4.2.10.3.2 Out Tab

LMTP socket: This is only relevant for LMTP channels - see below.

Port number: Set the TCP port to be called (duplicates the -p command line flag). The
corresponding channel-specific variable is port=<integer>.

Encode: Control how messages are sent. Values of none and default may result in sending
messages which are invalid. Corresponds to the encode=<value> channel-specific variable.
The table below describes valid encode value and the resulting action be the SMTP sender.

If the body part is mime-unknown and the receiving host indicates support for the
8BITMIME ESMTP extension then the message will be marked as

default

BODY=8BITMIME, otherwise an attempt will be made to downgrade the content
to a 7-bit transfer encoding if necessary.Any invalid binary data in headers or
content parts will be passed as is. This setting does its best to send only valid
messages but will not refuse to transmit a message which it cannot fix.

No conversion of content will occur on transmission. If the body part is
mime-unknown and the receiving host indicates support for the 8BITMIME ESMTP

none

extension the message will be marked as BODY=8BITMIME. Any invalid binary
data in headers or content parts will be passed as is. 8-bit MIME content may be
sent to hosts which do not support it. This setting does not alter a message in transit
but may send messages which are invalid.

If the body part is mime-unknown and the receiving host indicates support for the
8BITMIME ESMTP extension then the message will be marked as

strict

BODY=8BITMIME, otherwise an attempt will be made to downgrade the content
to a 7-bit transfer encoding if necessary. Any invalid binary data in headers or
content parts will cause non-delivery of the message. This setting will not send
invalid messages. It will attempt to downgrade messages with 8-bit content to a
7-bit transfer encoding.

Maximum line length: Set a limit on the length of line that is sent. SMTP and RFC 1652
state that no more than 998 characters should be sent before a line break. By default there
is no limit on the line length. Corresponds to the line=<integer> channel-specific
variable.

Don't attempt Extended SMTP: do not attempt to use SMTP extensions. Corresponds
to the noesmtp channel-specific variable.

Don't do MX record lookup: Do not use MX records. Corresponds to the nomx
channel-specific variable and duplicates the -m command line flag.

Always generate relay DSN: Generate "relayed" DSN on transfer to DSN aware server.
Even if a remote system advertises the DSN SMTP extension, setting this option will cause
a "relayed" DSN to be generated for a message requesting a SUCCESS DSN on transfer
to that system. Corresponds to the relaydsn channel-specific variable.

Table Based Configuration

38M-Switch Advanced Administration Guide



4.2.10.3.3 Errors Tab

The Errors tab configures how the inbound channel behaves when invalid recipient addresses
are specified or when a very large number of recipients (often an indicator of unsolicited
email) are specified:

Maximum number of errors on address commands: If present, sets a maximum number
of errors which will be allowed on address-related commands (MAIL, RCPT, VRFY)
before the command will no longer be recognized. Corresponds to the maxerr
channel-specific variable.

Initial delay on errors: If present, sets a delay period (in seconds) which will be imposed
after each address-related error. Corresponds to the errdelay channel-specific variable.

Maximum number of recipients before sending a [TEMP error]: If present, sets a
maximum number of recipient addresses which will be accepted for an individual message.
Addresses in excess of this maximum figure will be rejected with a temporary error. The
presence of large numbers of recipient addresses in a message arriving from an external
MTA is often an indicator of junk mail. Corresponds to the maxrecips channel-specific
variable.

Maximum number of recipients before sending a [PERM error]: As for maxrecips,
but will cause a permanent error to be generated. Corresponds to the reciplimit
channel-specific variable.

4.2.10.3.4 Anti-Spam Tab

The Anti-Spam tab allows various settings associated with detection of unwanted email to
be configured.

Real time blacklists (RBL): If this is set, it enables the Realtime Blackhole List (RBL)
feature, see: http://mail-abuse.org/rbl

This corresponds to the rbl channel-specific variable.

A specific domain can be specified, which is used as a suffix to the calling IP address, for
use with local implementation. An alternative target address can also be specified, as some
RBL domains use non-standard addresses. Multiple RBL domains can be specified, in a
semicolon-separated list (they are used by the SMTP inbound channel in the order in which
they are specified). The syntax of the switch is thus:

rbl=<rbl_domain>["+"<target_address>][";"<rbl_domain>…]

Don’t refuse connection on a DNSBL match: If this is set, messages from remote MTAs
which are found on the configured Realtime Blackhole List are not rejected, but instead
have their headers annotated with "X-RBL-FOUND: <name> (<addr>)", where <name>
and <addr> are the name and IP address of the sending system. This corresponds to the
rblheader channel-specific variable.

Reject code (SMTP): This selects the error code to be used when connections are rejected
(for example, for the RBL or if sloppy is not true and there is no domain associated with
the calling IP address). It can be set to 421 for a temporary reject (the default), or 553 for
a permanent reject. It corresponds to the reject channel-specific variable. Additional
information will be added to this, depending on the type of the reject.

SPF: SPF (Sender Policy Framework) is a way of checking that the purported sender
address (the argument to the SMTP "MAIL FROM" command) is permitted to send mail
from the calling IP address. It is based on the use of special DNS records. For more
information on SPF, see RFC 4408. The value of the field in MConsole controls the
behaviour for different SPF results. The default behavior is to insert an extra heading field
indicating the result. The value can be a comma separated list of result strings. If the result

Table Based Configuration

39M-Switch Advanced Administration Guide



matches one of these, then the command is rejected. Possible result values are fail, soft,
temp and perm. This control corresponds to the spf channel-specific variable.

4.2.10.3.5 Auth Tab

The SMTP inbound channel supports the AUTH keyword [RFC 2554]. This allows
connections to the SMTP server to be authenticated. Various SASL authentication
mechanisms are supported (as detailed below).

The Simple Authentication and Security Layer (SASL) provides a method for adding
authentication support with an optional security layer to connection-based protocols. It
also describes a structure for authentication mechanisms. The result is an abstraction layer
between protocols and authentication mechanisms such that any SASL-compatible
authentication mechanism can be used with any SASL-compatible protocol. See for more
information.

The successful completion of an authentication exchange can cause the SMTP server to
select a new incoming channel can be selected, allowing alternative authorization to occur.
In order to select a new channel, a new mta name is constructed in the form
"<authorization_id>.auth". The SMTP server then reinitializes with this new MTA
name, which may cause a different inbound channel to be selected. The simplest
configuration which would allow this can be illustrated by the mtatailor fragment below:

chan smtp-external type=both name=smtp-external
prog=slmtp key=smtp show="with SMTP (external)"
content-out="822"
check=sloppy outadr="822" appcont="1.3.6.1.4.1.453.5.2"
bptout="ia5, mime-unknown" hdrout="822"

The example above assumes that "isode.com" is the MTA’s local domain. An SMTP
connection attempt coming in from the outside world would initially use the
smtp-external channel (since its hostname is not listed in the localhosts table).

The successful completion of the authentication exchange results in the MTA name
associated with the connection being changed. It has the form <authorization_id>.auth
. This name is used for authorization, i.e. in looking up an entry in the auth.mta table.
The association of the connection with a channel is also recalculated, through matching
entries in the associated mtatable. The channel choice also affects authorization, and it
affects other configurable behaviour.

A number of authentication-specific options are configurable for the SMTP channel via
MConsole’s Auth tab:

Disable AUTH command: Selecting this option prevents the SMTP server from advertising
the AUTH command in its EHLO response, and causes it to reject AUTH commands with
a "502 5.5.2 command not implemented" error. Corresponds to the disable_auth
channel-specific variable.

When the option is not specified, it defaults to true (i.e. AUTH command is supported).
When the option is specified, but no value given - it defaults to true as well.

Require authentication: This option specifies whether authentication is required before
starting a mail transaction. If its value is true, and the client hasn't authenticated, the server
will reply "530 5.5.1 (Must authenticate first)". Corresponds to the require_auth
channel-specific variable.

When the option is not specified, it defaults to false. When the option is specified, but no
value given, it defaults to true. See also "soft_noauth" option.

Soft NoAuth: If this option is true, all SMTP authentication 5XX error codes will be
reported as 4XX error codes instead. Corresponds to the soft_noauth channel-specific
variable.

Table Based Configuration

40M-Switch Advanced Administration Guide



BURL Command: This option specifies whether the BURL command is enabled on the
server. The value "auth" says that BURL is advertised, but only allowed after successful
authentication. If the client is not authenticated the server will respond "530 5.5.1" (Must
authenticate first). Corresponds to the burl channel-specific variable, which can have values
"yes", "no" or "auth".

When the option is not specified, it defaults to true (i.e. BURL command is supported).
When the option is specified, but no value given - it defaults to true as well. See also the
"soft_noauth" option.

EXPN Command: This option specifies whether the EXPN command is enabled on the
server. The value "auth" says that EXPN is advertised, but only allowed after successful
authentication. If the client is not authenticated the server will respond "530 5.5.1" (Must
authenticate first). Corresponds to the expn channel-specific variable, which can have
values "yes", "no" or "auth".

When the option is not specified, it defaults to true (i.e. EXPN command is supported).
When the option is specified, but no value given - it defaults to true as well. See also the
"soft_noauth" option.

VRFY Command: This option specifies whether the VRFY command is enabled on the
server. The value "auth" says that VRFY is advertised, but only allowed after successful
authentication. If the client is not authenticated the server will respond "530 5.5.1" (Must
authenticate first). Corresponds to the vrfy channel-specific variable, which can have
values "yes", "no" or "auth".

When the option is not specified, it defaults to true (i.e. VRFY command is supported).
When the option is specified, but no value given, it defaults to true as well. See also the
"soft_noauth" option.

Allow plaintext SASL: This option specifies whether plaintext SASL mechanisms (PLAIN,
LOGIN) are allowed. If its value is false, those mechanisms will not be advertised in the
EHLO response. When the option is not specified, it defaults to true. When the option is
specified, but no value given, it defaults to true as well. When the option is set to "tls",
plaintext SASL mechanisms are only allowed over a TLS-encrypted connection.
Corresponds to the allowplaintext channel-specific variable.

Require TLS: This option specifies whether a TLS-encrypted connection is required before
starting a mail transaction. If its value is true, and the connection is not encrypted, the
server will reply "530 5.5.1 A TLS-encrypted connection is required".
Corresponds to the require_tls channel-specific variable.

When the option is not specified, it defaults to false. When the option is specified, but no
value given, it defaults to true.

SASL Mechanisms advertised: This option allows you to limit which mechanisms are
advertised by the channel in its EHLO response. The intersection of the set of available
mechanisms with this list is returned in the EHLO response: e.g. if
"PLAIN;DIGEST-MD5;GSSAPI" are available and the value of this option is
"SRP;GSSAPI;DIGEST-MD5", the EHLO response will list at most DIGEST-MD5 and
GSSAPI. The corresponding channel-specific variable is sasl_mechs = <";" separated
list of SASL mechanisms>.

"At most", because other options like allowplaintext affect the final list of available
options as well.

4.2.10.3.6 SASL Mechanisms

The Message Switch supports multiple SASL mechanisms via a plugin system. When the
Switch starts up it loads all the plugins installed in (LIBDIR)/sasl2. This makes it simple
to completely disable certain mechanisms (by removing the plugin file and restarting the

Table Based Configuration

41M-Switch Advanced Administration Guide



Switch) or to add additional mechanisms (by copying in the new plugin and restarting the
Switch).

Each mechanism supplied has different characteristics that might make it more or less
useful for a given Message Switch.

Table 4.5. -SASL Mechanism Characteristics

SecurityApproachMechanism

Very weakSends plaintext passwords across the network.PLAINLOGIN

WeakBasic challenge/response, but vulnerable to server spoofing
attacks

CRAM-MD5

WeakBasic challenge/response, using a Microsoft-specific
algorithm

NTLM

GoodChallenge/responseDIGEST-MD5

GoodOne-time passwordOTP

4.2.10.3.7 TLS Tab

TLS support: Configures the outbound use of TLS by the SMTP Client and whether the
inbound SMTP server supports TLS and advertises this support in the response to an EHLO
command. Possible values are:

MeaningValue

Use TLS if availableOPTIONAL

TLS to be advertised by SMTP Server onlySERVER

Same as OPTIONALYES

This option corresponds to the tls channel-specific variable.

Identity: Configures where to look for the digital identity to be used by the SMTP server.
An identity is contained in a file which can be: rsa.p12 (with passphrase file rsa.p12.pphr),
dsa.p12 (with passphrase file dsa.p12.pphr) or id.p12 (with passphrase file key.pphr). The
id.p12 form is deprecated. This is a PKCS#12 file containing the private key and certificate.
If this file is passphrase protected, the passphrase should be held in a text file. Corresponds
to the identity channel-specific variable.

Some additional channel-specific variables can only be set via the Advanced Tab in
MConsole at present:

local: More stringent checks to see if MX records point to the local MTA (duplicates the
-l command line flag).

reconnect_retries=<integer>: For SMTP connections only, the number of times to retry
the complete connection processing. Defaults to no retries.

SMTP Client

The SMTP client program for outbound messages understands various channel-specific
variables, which can be set from MConsole.

-p port: It can be given this flag to tell it to connect to a tcp port other than the default. This
can be set up by setting the tailor entry to something like the following:

chan smtp-odd prog="smtp -p 2001",show="Odd smtp"...

Table Based Configuration

42M-Switch Advanced Administration Guide



-l : This flag only makes sense if the DNS is being used. This makes more stringent checks
on the DNS MX records to see if a host is actually the local host by comparing IP addresses
as well as domain names.

-m : It can also be given this flag if compiled with nameserver support, in which case it
will not resolve addresses using MX records. This is occasionally useful for internal traffic.

An 8bit message is one which is flagged as 8bit when transferred into the message switch
from another switch, using the 8BITMIME SMTP extension [RFC 1652].

A message will also be flagged as 8bit if, when the mimeflatten channel processes a
message, MIME body parts which have the 8bit or binary content transfer encoding are
found.

When an 8bit message is transferred to a host that supports the 8BITMIME extensions, it
is flagged as an 8bit message to that host, and transferred unchanged.

When the receiving host does not support the 8BITMIME extension, or the message is not
flagged as 8bit, then the transfer method depends on the configuration of the encode option.

4.2.10.3.8 Greylist Tab

4.2.10.4 LMTP Channel

The LMTP channel is an outbound channel which uses the slmtp program. It is designed
to enable the integration of the Message Switch with the IMAP Message Store.

It is configured in the same way as the smtp channel (See SMTP channel), with the following
exceptions:

name lmtp
show "with LMTP"
prog slmtp
type out
access mts
lmtp <hostname> | <UNIX socket name>
port <port number>

The value of the lmtp and port tailoring variables depends on whether you are using TCP
or UNIX sockets.

Using TCP

When using TCP to deliver, the lmtp variable should be set to the hostname of the system
to which the channel is to connect. If no hostname is specified, localhost will be used
instead. The TCP port to use will need to be configured as well. It should NOT be set to
25. In MConsole, these fields can be set on the Out tab for the channel: the LMTP socket
field should be set to the target hostname.

Note also for TCP, that if you are delivering to a host which is not the local host, as defined
in loc_dom_mta , you must specify the following in the channel configuration:

mta <hostname>

Identity: this field of the Out tab allows the directory containing the TLS identity
information to be configured. If not specified, then the value of the tailoring variable
tls_path (set on the MTA’s Security tab) is used. If that is not set, then (TBLDIR)/tls
will be used. It corresponds to the identity channel-specific variable.

Using UNIX sockets

Table Based Configuration

43M-Switch Advanced Administration Guide



When using UNIX sockets, the value of the lmtp variable (the LMTP socket field on the
Out tab in MConsole) should be the name of a UNIX socket. For example, the UNIX socket
name, for SMS 3.0, is /var/md/store/ipc/lmtpd. The following example shows a typical
configuration for the LMTP channel.

chan lmtp prog=slmtp, show="with LMTP", type=out, access=mts,
adr=822, content-out=822,
lmtp=<unix socket name>, hdrout=822-norm,
bptout="ia5, mime-unknown, mime-multipart-signed,
mime-multipart-encrypted"

4.2.10.5 P3 Channel

The P3 channel provides submission and delivery of X.400 messages using the P3 protocol,
either directly to/from a P3 User Agent, or indirectly via the P7 Message Store. Message
delivery and report delivery operations take place on associations initiated by either the
MTA or MTS user, while message and probe submission operations are accepted on
associations initiated by the MTS user. These actions implement the mts-access and
mts-forced-access application contexts for P3.

Channel-specific configuration variables are:

ndr_on_error: Controls the behaviour of the P3 Channel when some errors are encountered
during message delivery. If set to any value, the message concerned will be non-delivered:
if unset (the default) a temporary error will be logged and message delivery will be retried
later.

acceptall: Setting this to "true" switches on the accept all option. In this case the P3 Server
will not reject messages containing a bad address and will instead cause a non delivery
report to be generated. In MConsole, this can be configured using the Accept all recipients
option on the Program tab.

P3 protocol submission and delivery channels are implemented via the p3server and
p3client programs. Message delivery and report delivery operations take place on
associations initiated by either the MTA or MTS user, while message and probe submission
operations are accepted on associations initiated by the MTS user. These actions implement
the mts-access and mts-forced-access application contexts for P3. As a result, a
normal MTA configuration will have two P3 channels configured - a p3server channel
which can perform submission and delivery, and a p3deliver channel which only performs
delivery.

NOTE: If tsapd is to be used, as opposed to iaed, an entry of the following form must
be added to the (SHAREDIR)isoservices file for the P3 submission channel:

tsap/p3 "403" /opt/isode/libexec/p3server

The P3 channel processes either use standard table-based methods or X.500 Directory
lookup to obtain the information necessary to deliver messages or accept them for
submission. The tailoring required differs between the two lookup methods.

If table-based lookup is used, mtatailor.tai file entries similar to the following entries are
required:

tbl p3 show="P3 protocol submission & delivery"
chan p3 show="P3 submission & delivery" type=both, access=mts,
adr=X.400, key=p3server, prog=p3client,
sort="user priority time",content-out="p2,p22", outtable=p3,
hdrout="p2,p22,ipn",
bptout="ia5,g3fax,external,bilateral,undefined, ttx,

Table Based Configuration

44M-Switch Advanced Administration Guide



videotex,national,encrypted,tifl",
intable=p3

If X.500 Directory lookup is used, mtatailor.tai file entries similar to the following entries
are required:

tbl p3 show="P3 protocol submission & delivery"
chan p3 show="P3 submission & delivery" type=both, access=mts,
adr=X.400, key=p3server, prog=p3client,
sort="user priority time",content-out="p2,p22", outtable=p3,
hdrout="p2,p22,ipn",
bptout="ia5,g3fax,external,bilateral,undefined, ttx,
videotex,national,encrypted,tifl"

Instead of MTA initiated delivery (using the p3client process), the P3 channel can be
configured to deliver messages only when the MTS user indicates its presence and
specifically requests delivery. For this the prog field needs to be removed (so that the
Queue Manager does not start any P3 channel instances). When an MTSBind arrives at
the P3 Server process, the requested application contexts in the Bind Argument are checked,
and if the Message Delivery Service Element is indicated, delivery processing is turned
on.

As messages may be in the system some time awaiting delivery, the message timeout value
may need to be altered. This value is set in the mtatailor.tai file variable, returntime.

Changes to the mtatailor.tai file for MTS initiated delivery will take effect when the MTA
is restarted.

4.2.10.6 List Channel

The List channel performs expansion of Distribution Lists. The channel executable can
work in X.400 or Internet mode, but if you want to support both modes of operation on the
same MTA you will need to configure two channel instances.

The Program tab for the List channel in MConsole has a number of controls:

Operational mode: Whether this channel is working in X.400 or Internet mode, or Default
mode. In Default mode, the channel will use X.400 mode if the MTA is X.400-only and
will use Internet mode otherwise. This single control sets the x400 or internet
channel-specific variables as appropriate.

Use Directory lookup: Whether this channel should use Directory lookup for DL expansion.
Defaults to "no", which means that the channel will use table-based expansion instead.
This control sets the dirlookup channel-specific variable.

Expand sublists immediately: Controls whether entries in the Distribution List being
expanded which are themselves the addresses of other Distribution Lists should be expanded
immediately, or left for processing by another List channel instance after resubmission.
This control sets the value of the dosublists channel-specific variable.

Allow empty lists: Controls whether messages which are addressed to an empty Distribution
List cause a DR to be generated (empty=false) or marked as successfully processed
(empty=true). This control sets the value of the empty channel-specific variable.

Local DIT Base: The value for this field is a string-encoded DN, giving the point in the
DIT under which searches for Distribution List entries should be performed, if Directory
lookup is being used. Sets the value of the localdit channel-specific variable.

Search depth: Controls how the search for Distribution List entries should be performed,
if Directory lookup is being used. Sets the search channel-specific variable.

Table Based Configuration

45M-Switch Advanced Administration Guide



Ignore dl-expansion-prohibited: Allows the channel to be configured to ignore the
dl-expansion-prohibited flag which may be present in a message, and which would
normally cause the List channel to generate a negative DR for the message. Sets the
ignore-dl-exp-prohibited channel-specific variable.

4.2.10.7 Checker Channel

The Checker channel performs anti-spam and anti-virus checking. Full details of this
channel and how to configure it are provided in the Content Checking chapter of this manual
and  M-Switch Administration Guide.

Main Tab

Per-user LDAP config: Setting this to "Yes" will enable the channel to use per-user
configuration read from the Directory. This control sets the ldap_userconfig
channel-specific variable.

LDAP config prefix: This allows the a prefix to be added to the name of the Directory
Profile used for per-user configuration. The control sets the value of the
ldap_config_prefix channel-specific variable.

XML configuration file: Specifies an alternative XML configuration file for the channel
(the default is “<channel-name>-config.xml”. Sets the value of the configfile
channel-specific variable.

Tcl script used in init: This specifies a the name of a Tcl script which will be executed
during the initialization phase of the Tcl-based component of the Checker channel. Sets
the value of the script channel-specific variable.

Tcl command used in init: This specifies a Tcl command which will be executed during
the initialization phase of the Tcl-based component of the Checker channel. Sets the value
of the command channel-specific variable.

The following channel variables can be overridden by the channel configuration within the
scanconfig setup for the channel:

Anti-virus Tab

virusengine: The name of the Tcl package to load which is the interface to the Anti-Virus
engine. Not all platforms support all A-V engines. One of:

• VirusNone - no checking performed

• VirusClamAV

• VirusNorman

• VirusSophos

repair If true, attempt to repair infected attachments

nocheck If true, disables virus checking

uudecode If true, look for infected uuencoded attachments

maxsize If greater than zero, gives the maximum size in bytes for attachments which are
checked

tempdir Temporary directory used to create files from attachments for A-V checking. Can
be on a RAM disk for efficiency

nodelete Delays the deleting of temporary files (unless tempdir is used).

Before the checker channel can be used, it will be necessary to set up a minimum set of
checking rules and build the cache file which holds the recompiled version of these rules.

Table Based Configuration

46M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#ContentChecking_01


This minimum set of rules is contained in the file (SHAREDIR)/msgcheck.zip. You must
copy the file to (ETCDIR)/switch and unzip it, creating a msgcheck subdirectory. After
doing this, you will need to run the cachebuildTcl script for each checker channel which
you have created:

cachebuild mimecheck

On Windows you will need to explicitly run the Tcl interpreter and pass in the name of the
Tcl script (cachebuild) as the first command line argument.

Notes on AntiVirus Packages

ClamAV

M-Switch uses ClamAV by communicating with the daemon process included in the
package. When configuring ClamAV (in the clamd.conf file), you will need to check and
modify the following variables:

• TCPSocket: this needs to be uncommented and should be set to the default which
M-Switch assumes of 3310

• User: this should be set to either the ‘pp’ userid or ‘root’, so that the clamd daemon
can access files in the MTA’s queue.

Norman

M-Switch uses a programmatic interface to the Norman Anti-Virus libraries, so simply
installing the Norman packages should make the functionality available.

Sophos

M-Switch uses the Sophos AV package by interfacing to the SAVDI daemon over a protocol
connection. The SAVDI daemon installs on top of the standard Sophos anti-virus product.
An appropriate SAV Dynamic Interface installation package for your platform can be
supplied on request by Isode Support. The daemon is configured via a file named
savdid.conf.

On Unix platforms, the default settings in this file are correct, but on Windows it will be
necessary to look for the “channel” section which configures the SSSP protocol and set
the allowscanfile configuration variable to the value FILE.

On all platforms you will also need to ensure that the daemon process runs with sufficient
privilege to be able to access files which have been created by the MTA processes.

Anti-Spam Controls

prionormal Rule priority level applying for normal level

priomild Rule priority level applying for mild level

prionone Rule priority level applying for no A-S.

scanall Scan all attachments, not just text bodies, for A-S.

no_unknown_charsets Enable a rule which traps unknown charsets

General controls

quarantinedir Directory for quarantined messages. This can contain fields in which are
substituted date and time values. See the definition of the archive directory.

surbl Suffix to be used for anti-spam URL lookup. If set to the empty string, disable SURBL
lookup. Standard rule files define this to be multi.surbl.org.

Table Based Configuration

47M-Switch Advanced Administration Guide



redirect Default address for redirection, if the action for a rule is to redirect.

showwords Display matched words in annotated messages.

scanlog If set, causes logging of various scanning events.

scancontext Size of context for matches shown in scanning logging.

Setting Up ClamAv on Windows for use with a Checker Channel

Instructions on how to install and configure ClamAv on Windows.

• Download ClamAV for Windows from http://oss.netfarm.it/clamav

• Create C:\clamAV\db

• Copy the contents of the downloaded files into C:\clamAV

• Import the registry settings from C:\clamav\clamav.reg by either double clicking or
using the following command within an elevated command prompt:

regedit /s c:\clamAV\clamav.reg

• Install the Clam Service, running the following from an elevated command prompt (note
the use of two --)

c:\clamAV\clamd.exe --install

• Change the start-up of this service using the following; note the white space after the
equals sign

sc config "ClamD" start= auto

• Download the latest ClamAV updates from
http://www.clamwin.com/content/view/58/27/, copy these two files to
C:\clamav\db (This is an offline update - you can also use the FreshClam program to
automate this).

• Start the clam daemon service

Net start "clamD"

4.2.10.8 CCCP Channel

The Content Checking and Conversion Protocol (CCCP) is a means for a checking channel
to communicate with a server process which can perform both content checking, and also
change the content. It can cause the message to be non-delivered, or deleted for each
recipient, or the message can be redirected for a recipient. Full details of this channel and
how to configure it are provided in  M-Switch Administration Guide.

4.2.10.9 Shaper Channel

The Shaper channel is used to perform content conversion. It is documented in the Content
Conversion section of this manual.

4.2.10.10 822-local Channel

The 822-local channel delivers Internet messages into a Unix maildrop file. There are four
channel-specific variables which can be set from the Program tab in MConsole:

Table Based Configuration

48M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#ContentChecking_01


Mailbox name: Name of mailbox file. It defaults to ppmailbox. This control sets the
mboxname channel-specific variable.

Mail filter: Name of mailfilter file. Defaults to .mailfilter. This control sets the
mailfilter channel-specific variable.

Mailbox delimiter 1: Delimiter character string for start of message in mailbox. Defaults
to "\\1\\1\\1\\1\\n". This control sets the delim1 channel-specific variable.

Mailbox delimiter 2: Delimiter character string for end of message in mailbox. Defaults
to "\\1\\1\\1\\1\\n".This control sets the delim2 channel-specific variable.

4.2.10.11 Housekeeper Channel

The Housekeeper channel performs a variety of functions. Its primary purpose is to generate
X.400 Delivery Reports and Internet DSNs when requested by other channels. It is also
responsible for generating warnings when message delivery or transfer is delayed (in
MIXER and Internet-only configurations), resubmitting messages when requested, reloading
messages into the Queue Manager when they have been updated, deleting messages from
the queue on command, redirecting messages to alternative recipients, converting X.400
DRs to Internet DSNs and tidying up general ‘trash’ in the MTA’s queue.

There are only two channel-specific tailoring variables:

Discard messages: If a message for which a DR or DSN is being generated has an empty
originator address, there is nothing to address the DR or DSN to, and the DR or DSN would
normally be discarded. To prevent this, the discard channel-specfic variable can either
be set to "no", in which the Postmaster address for the MTA will be used as the recipient
of the DR/DSN, or it can be set to the Internet address of the desired alternative recipient
of the DR/DSN.

Text body templates: This configures a template file used to configure the text which is
included in DSNs and MDNs. If the filename is a relative filename, it is relative to
(ETCDIR). This control sets the template channel-specific variable.

Trash Facility

The trash facility within the Housekeeper channel frees storage which no longer is of
interest to the mail system. It only removes files and directories which it deems suitable
for deletion and whose latest modified times are suitably ancient. The time interval after
which a file is suitably ancient may be configured via the "Trash Lifetime" item on the
"Advanced" tab for the MTA in MConsole, or via an entry of the form "set
trash_lifetime=<interval>" in the mtatailor.tai file.

If not specified, the interval is set to the default value of three days. If given, the interval
must be specified as a string of the form 4d 2h which represents an interval of four days
and two hours. The time unit abbreviations recognised are:

• s seconds

• m minutes

• h hours

• d days

• w weeks

dr2dsn Facility

The dr2dsn facility within the Housekeeper channel converts X.400 Delivery Reports into
NOTARY Delivery Status Notifications (DSNs) in the form of MIME RFC 822 messages.
Once constructed these messages are then submitted to the Queue Manager for return to
the sender. The text body generated for the DSN can be configured.

Table Based Configuration

49M-Switch Advanced Administration Guide



Report Generation Facility

The Housekeeper channel is responsible for generating X.400 Reports and NOTARY
DSNs. It is scheduled when a channel decides that one or more recipients of a message
require a report. The channel saves the information required to generate the report in the
message queue, and returns an indication to the Queue Manager that a report is required.

An X.400 report may contain a delivery report indicating successful delivery to a recipient,
or a non-delivery report indicating that the message could not be delivered to a recipient.
A single X.400 report may also contain both types of delivery report for messages with
multiple recipients; for example, a message could require an X.400 report that contains a
delivery report for Recipient A, but a non-delivery report for Recipient B.

A NOTARY DSN may similarly indicate successful or unsuccessful delivery. It may also
indicate distribution list expansion, relay to an MTA which does not support NOTARY,
or that the message has been delayed. A single DSN may also contain multiple types of
delivery report for messages with multiple recipients; for example a message could require
a DSN that contains a delivery report for Recipient A, a non-delivery report for Recipient
B, and a delayed report for Recipient C.

The text body generated for the DSN can be configured.

Discard Address Function

When the Housekeeper channel encounters an unroutable DSN, or a message with no return
address causes a permanent error, the channel can discard the error or send a DSN to a
chosen address. This is configured via the value of the discard channel-specific variable.

4.2.10.12 FAPI Channel

NOTE: The FAPI channel is only supported on Windows platforms.

The FAPI channel provides file-based message submission and delivery facilities. The
channel is actually implemented as two independent parts: a fapiserver process which
runs as a Windows Service, providing a submission service, and a fapichannel channel
which provides the delivery service. The channel uses a private format, where elements of
the X.400 P1 envelope and P22 content (e.g. addressing and some header fields) are
contained in a textual ‘header’ file, with bodyparts supplied as separate files referenced
from the associated header file.

A detailed specification of the FAPI interfaces can be obtained from the relevant ECB
documentation. Information in this manual is confined to the details of how to configure
and run the channel.

FAPI Submission Service

For normal operation, the FAPI submission service should be installed as a Windows
service. This can be done using the Services tab of the Switch Operations View in MConsole
(or the standalone Isode Services Manager). Select the “Add” option, and configure fields
as shown below:

isode.pp.fapiService Name

Isode M-Switch FAPI ServerDescription

(SBINDIR)/fapiserver.exeExecutable path

-c fapiService arguments

All other parameters can be left empty or with their default values.

Once the submission service is installed, you can start it using the Services tab of the Switch
Operations View in MConsole (or the standalone Isode Services Manager) . If you wish
to run the submission service as a standard program, you will need to specify the "-d"

Table Based Configuration

50M-Switch Advanced Administration Guide



(debug) command line flag, in addition to the mandatory channel name ("-c") command
line flag and argument; i.e:

>C:
>cd \Program Files\Isode\bin
>fapiserver -d -c fapi

Once the submission service is running, all of the rest of its configuration information is
read from the relevant channel entry in mtatailor.tai and either directory or table-based
configuration. As the configuration information is shared between the submission and
delivery processes, it is described separately (below).

4.2.10.13 FAPI Delivery Channel

The FAPI channel is a standard delivery channel. Its tailoring is described below.

FAPI Tailoring

Directory-based configuration of the FAPI channel and associated Points of Access (PoAs)
relies on the fact that from a configuration standpoint a PoA looks very much like a P7
Message Store. A dummy Shared Message Store can be configured, allowing individual
Message Store Users with associated OR-addresses and Mailbox Roots to be assigned to
it. A ‘real’ P7 Message Store process is never run: instead the FAPI submission server and
delivery channel assume roughly the same role as the P7 process's submission and delivery
functions.

The following discussion assumes that you have already set up a standard X.400 Messaging
Configuration (without a Message Store), as described in the M-Switch (X.400)
Administration Guide.

Next, use MConsole to create a Message Store object. You can assign any name to the
Message Store, and give it a Presentation Address of “NS+” (i.e. a NULL address). “Listen
level” and “Invoke level” can both be set to “Static”. You will need to associate the
X.400 Routing Tree you should have already created with the Message Store.

Next, use MConsole to create a new channel, with the name ‘fapi’. This should have the
following settings:

type=both
access=mts
no outbound protocol selected
prog=fapichannel
key=fapi
store="<cn=MS, cn=Messaging Configuration…..>"
content-out="p2 p22"hdrout="p2 p22"sort=user
adr=X.400 bptout="ia5 undefined bilateral"

Any fields not mentioned above can be left with their default values. The values entered
for the store key should be the Distinguished Name of the Message Store directory entry
created earlier. This can be discovered by using the Sodium program to examine the section
of the Directory Information Tree containing the Messaging Configuration - it will probably
be something like: "cn=MS, cn=Messaging Configuration, ou=MHS, o=Example
Corp, c=GB". Note that the DN needs to be enclosed in <> characters, and will need to
be quoted if it contains any spaces.

Next you need to create an ‘X.400 Message Store User’ corresponding to each POA which
you wish to support. Configure the MS User's “Mailbox Path” to be the full pathname to
the user's Point of Access. You can select a zero-length password - it will not actually be
used.

Table Based Configuration

51M-Switch Advanced Administration Guide



Once you have created an MS User with the EMMA wizard dialog, navigate to the user's
properties, and change their ppchannel attribute value from "p3" to "fapi". This will
cause the MTA to deliver messages to them using the FAPI channel.

You can now start the services which make up the Isode X.400 Message Switch, using the
Isode Service Manager. Remember that the Isode MTA Tailoring Daemon service must
start first.

You are now ready to test submission and delivery.

The complete list of channel-specific variables which may be set for the channel is:

inreadydir: The name of the inbound ‘ready’ subdirectory for a mailbox: defaults to
“in/ready”

inheaderdir: The name of the inbound ‘header’ subdirectory for a mailbox: defaults to
“in/header”

indatadir: The name of the inbound ‘data’ subdirectory for a mailbox: defaults to
“in/data”

outreadydir: The name of the outbound ‘ready’ subdirectory for a mailbox: defaults to
“out/ready”

outheaderdir: The name of the outbound ‘header’ subdirectory for a mailbox: defaults to
“out/header”

outdatadir: The name of the outbound ‘data’ subdirectory for a mailbox: defaults to
“out/data”

delrepheaderdir: The name of the delivery-report ‘header’ subdirectory for a mailbox:
defaults to “del_rep/header”

delrepreadydir: The name of the delivery-report ‘ready’ subdirectory for a mailbox:
defaults to “del_rep/ready”

subrepheaderdir: The name of the submission-report ‘header’ subdirectory for a mailbox:
defaults to “sub_rep/header”

subrepreadydir: The name of the submission-report ‘ready’ subdirectory for a mailbox:
defaults to “sub_rep/ready”

store: The DN of the FAPI Server's own entry in the Directory

password: The userPassword attribute associated with the FAPI Server's Directory entry

sloppy: if sloppy is set to “true” (the default is “false”), the inbound FAPI server will
ignore (but log) any unknown keys or malformed lines in its input data, instead of reporting
an error and generating a negative submission report (the default behaviour).

forcequote: if forcequote is set to “false” (the default is “true”), data values which
are written to report and message files will only be enclosed in double-quotes if the data
values include whitespace. The default behavior is to quote data values regardless of whether
they need it or not.

4.2.10.14 P1 File Channel

The p1file channel comes in two parts: an inbound (P1 File Server) and an outbound process
(P1 File Client). The processes read from and write to binary files containing the BER
encoding of P1 messages. Channel-specific tailoring controls are:

Table Based Configuration

52M-Switch Advanced Administration Guide



4.2.10.14.1 In Tab

Error Directory: Configures where the inbound channel writes messages which cannot
be submitted for some reason. The default value is /var/isode/p1file/errors on Unix and
C:/Isode/p1file/errors on Windows. Sets the value of the errdir channel-specific variable.

Input Directory: Configures where the inbound channel expects messages for submission
to be placed. The default value is /var/isode/p1file/inbound on Unix and
C:/Isode/p1file/inbound on Windows. Note that on Unix, this directory must be
readable/writeable by the PP user. Sets the value of the indir channel-specific variable.

Remote MTA: Configures the MTA name which the channel uses when submitting
messages. This variable is mandatory unless the p1file channel program has been
configured to run with the "-m <mtaname>" switch. Sets the value of the remote_mta
channel-specific variable.

Sleep: The length of time for which the channel will sleep between processing one set of
inbound messages and checking for a new set. Only used on Unix (on Windows a
ChangeNotification mechanism is used instead). Defaults to 1 second. Sets the value of
the sleep channel-specific variable.

Prefix: Defines a file prefix which is required for input files (i.e. files which do not have
this prefix will be ignored). Can be either a fixed character string (e.g. "msg.") or “%p”.
In the latter case, the p1file process will expect all message files to start with a priority
indicator character of “h”, “m” or “l”, indicating high, medium or low priority respectively.
Messages will then be processed in priority order. The default is for all files to be processed.
Sets the value of the prefix channel-specific variable.

Suffix: Defines a file suffix which is required for input files (i.e. files which do not have
this suffix will be ignored). Must be a fixed character string (e.g. ".msg"). The default is
for all files to be processed. Sets the value of the suffix channel-specific variable.

Number of open retries: On Windows, the ChangeNotification which alerts the p1server
process to new files will fire when a new file is created in the input directory, but before
the file has been closed by the process which is creating or copying it causing the p1server
to attempt to open the file and discover that it is locked. When num_open_retries is set
non-zero, the p1server will wait for a short interval and then attempt to open the file again,
up to the configured limit on the number of attempts. Defaults to 0 (i.e. no retries). Sets
the value of the num_open_retries channel-specific variable.

Retry timeout: The time (in seconds) to wait before retrying after a failed file open. Defaults
to 1 second. Sets the value of the retry_timeout channel-specific variable.

Accept all recipients: Configures whether the channel should accept all recipients and
subsequently generate negative DRs for any invalid addresses, or should reject a message
which contains invalid addresses. Sets the value of the acceptall channel-specific variable.

4.2.10.14.2 Out Tab

Output Directory: Configures where the outbound channel writes outbound messages to.
The default value is /var/isode/p1file/outbound on Unix and C:/Isode/p1file/outbound on
Windows. Note that on unix, this directory must be readable/writeable by the PP user. If
“%m” is specified in the path, it will be replaced by the name of the outbound MTA. Sets
the value of the outdir channel-specific variable.

Out File: Configures a template for outbound file names. If used this must include “%q”
somewhere - this will be replaced with the QueueIdentifier of each message written. The
template may also include “%p“ for standard priority and “%P“ for military priority
(including use of priority-level-qualifier if present). For standard priority, the letters n,l
and h are used to indicate normal, low and high priority messages. Reports are indicated
with an uppercase R. Probes are just set to low priority. For the “%P“ substitution, letters
i,p,r,d,o and f are used to indicate immediate, priority, routine, deferred, override and

Table Based Configuration

53M-Switch Advanced Administration Guide



flash priority levels. With the “%P“ substitution, if the priority-level-qualifier envelope
extension is not present, just p,d or f will be output. If not specified, the default name of
output files is just the QueueIdentifier. Sets the value of the outfile channel-specific
variable.

4.2.10.14.3 Table Based Configuration

A typical mtatailor.tai entry for the p1file channel would look like:

chan p1file type=both name=p1file prog=p1filechannel key=p1file
show="P1 file transfer channel" content-out="p2,p22"
outinfo="outdir=/var/isode/p1file/outbound/%m"
ininfo="remote_mta=p1file"
bptout="ia5, g3fax, ttx, videotex, national, encrypted, undefined,
       voice, tif0, bilateral, odif, iso6937, external, tif1"
hdrout="p2, p22" inadr="x400" outadr="x400"
contentin="p2, p22"
contentout="p2, p22"

Note that neither inbound nor outbound tables are required.

4.2.10.14.4 P1File Client

The outbound side of the p1file channel acts as a standard transfer-out channel. Messages
and reports are written to output directories. The output directory paths may include a
component which identifies the destination MTA, if required.

4.2.10.14.5 P1File Server

The p1file server process p1fileserver monitors a specific input directory for new files.
When a file arrives in the input directory, the process reads the contents of the file and
attempts to decode it as a P1 MTS APDU (i.e. an ASN.1 Sequence of envelope and content).
If this is successful the resultant message is submitted. Messages which cannot be decoded,
or for which submission fails for some other reason, are moved to an ‘error’ directory. The
default behavior of the process is to ignore files in its input directory whose names start
with “.” or “~”. Additional configuration allows only files with a particular suffix (e.g.
“.msg”) to be recognized, and can also enable high/medium/low priority sorting. On Unix
platforms the server process simply scans its input directory regularly, looking for new
files (the default is to check once per second). On Windows, use is made of filesystem
notification functions, such that no regular scan is required.

Messages which cannot be submitted for some reason (e.g. failure to decode the contents
of the file) are moved into an ‘error’ directory for manual analysis.

On Unix, p1fileserver should be run as a daemon, in the same way as the SMTP inbound
channel. The following command line switches are supported:

• -c <channelname>: The channel as which the server process should run (this parameter
is mandatory)

• -m: <mtaname>: (optional) The inbound MTA as which the server process should run.

On Windows the p1fileserver program should be installed as a Windows service. This can
be done using the Services tab of the Switch Operations View in MConsole (or the
standalone Isode Services Manager). Select the “Add” option, and configure fields as shown
below:

isode.pp.p1fileService Name

Isode M-Switch P1 File ServerDescription

(SBINDIR)/p1fileserver.exeExecutable path

-c p1fileService arguments

Table Based Configuration

54M-Switch Advanced Administration Guide



All other parameters can be left empty or with their default values.

Once the service is installed, you can start it using the Services tab of the Switch Operations
View in MConsole (or the standalone Isode Services Manager).

If there is a requirement for multiple p1file servers to read from the same input folder (i.e.
in a clustered MTA setup), the use of file locking needs to be enabled for the channel. This
is done by setting the channel specific variable use_lockfile to the value yes or true.

4.2.10.15 P3 Service

The standard p3server channel operates as a process per connection: the iaed OSI listener
process listens for an incoming connection on a specific Transport Selector from a P3 client
application (i.e. a P3 User Agent or a P7 Message Store) and starts a new p3server process,
passing it the connection. When the connection is terminated, the p3server process also
terminates.

When large numbers of P3 client applications wish to connect to an MTA at the same time,
this model has disadvantages, as a large number of processes will be started and connection
establishment will be relatively slow and costly.

From R16.3 onwards, an additional P3 Service is available. This is a long-lived
multi-threaded server process, which can handle multiple simultaneous connections. It
implements all of the same functionality as the existing p3server channel, while providing
better scalability.

This new server is not enabled by default. To use it, a number of configuration changes
are needed.

• Modify the existing p3server channel configuration using MConsole. On the “Inbound”
tab, delete the value in the “command” field, and change the Presentation Address so
that it uses a non-default port. This is needed to prevent conflicts with the iaed OSI
listener process.

• On Unix, rename /etc/isode/pp.rc.sample to pp.rc, and edit it. Uncomment the “USE_P3”
variable definition - this will cause the p3server process to be started as part of the MTA.

• On Windows, use the Isode Service Configuration GUI, or the Services tab in MConsole,
to perform the “Install Isode Services” operation. Select the “M-Switch” service
collection, and then ensure that the Isode M-Switch P3 Server (internally called
isode.pp.p3server) service is checked on the name pane before pressing the Finish button.

• On Unix, stop and restart the MTA to run the new server. On Windows simply start the
new service.

Any UAs will need to be reconfigured to use the modified Presentation Address on which
the P3 server is listening. Otherwise no change is required.

The maxinconn channel-specific variable controls the maximum number of simultaneous
connections the P3 Service will handle. This value is used as part of the service's
initialization of its Queue Manager interface, requiring a restart of the P3 Service for any
change to take effect.

4.3 Tables

This chapter describes the purpose and syntax of the various tables used by the message
handling system to configure local users. As discussed earlier, the aliases table, the
users table, the domain table, the or table and the channel table are the primary tables

Table Based Configuration

55M-Switch Advanced Administration Guide



used for routing and message delivery. There are also a set of tables containing authorization
information, and a family of tables that provide mappings between X.400 OR-names and
RFC 822 domain names. Specific channels may also have their own tables containing the
information they require.

The General Syntax of Table Entries

In general, entries in the tables are in the form:

<key> ":"<value>

The only special character is : which, if it appears on the left hand side, must be preceded
by a \ to escape it. All other characters are copied verbatim. However, some tables undergo
further processing and may need other escape sequences. The following sections describe
the purpose and details of the various tables.

4.3.1 Common

aliases auth.channel auth.mta auth.qmgr channel list channel users local shell list

4.3.1.1 The aliases table

The aliases table governs the handling of aliases for user names. It is used for several
reasons. These include:

• Mapping non-users to user names. (e.g., postmaster to some userID)

• Redirecting users who have moved (e.g., fred to fred@foo.edu)

• Rewriting users addresses (e.g., jea to j.austen)

• Mapping aliases. (e.g., list-request to j.austen)

• Identifying ambiguous users

Entries in this table are constructed as follows:

<username> “:”<type> <value> <qualifier>

Where

username is the local name for which an alias is being created.

type describes the user name or address. This may be one of:

• synonym: a new address, this name replaces the original value.

• alias: a new address is given, but in some cases this name does not replace the original
value. Aliases are not expanded for originators of messages whereas synonyms are.
Aliases are also not expanded in the normalisation of addresses in message headers.
Aliases, when expanded, add a redirect history element to the appropriate recipient of
the message.

• redirect: this is similar to the alias type with the restriction that if the
recipient-reassignment-prohibited submission extension is set in the envelope
of the message, the expansion of the new address is not permitted and a delivery report
is returned for that recipient.

• ambiguous: this indicates that the address is ambiguous and a delivery report should
be sent. In this case the value, if present, is used as additional text for use in the
supplementary information field.

Table Based Configuration

56M-Switch Advanced Administration Guide



The <value> is an address. It can be local or remote. The <qualifier> gives the
interpretation of the value. By default this is assumed to be a local user. However, full
addresses can be specified with the appropriate qualifier. These are:

• 822 : a remote RFC 822 user address is specified.

• X.400: a remote X.400 user address is specified.

• external: If this qualifier is present the name will not be looked up again in the aliases
file. This can be used for complex mappings.

The qualifier and format is best illustrated by a sample extract of the table as shown below.

Example of Aliases Table

# sample aliases
#
mailgroup-request:alias Alice.Carroll
postmaster:alias Alice.Carroll
pp:alias postmaster
#
j.austen:synonym Jane.Austen
jane:synonym Jane.Austen
#
wth:alias wth@widget.co.uk 822
#
pc:alias “/I=P/S=Principle/O=Widget/PRMD=Widget Co/ADMD= /c=gb/” X.400
#
f.chopin:synonym f.chopin@foo.bar 822 external

The table includes an entry for a local alias mailgroup-request .

The value Alice.Carroll is used as a key for a further search in the aliases table, but
will not replace the alias in the message header; if no match is found, and since the entry
is of type alias with no qualifiers, the address is assumed to be a local one and is used for
accessing the user table. Also, if a local submission arrives from mailgroup-request
then checking and authorization will be done on the basis of mailgroup-request rather
than Alice.Carroll .

The next entries indicate that j.austen and jane are both synonyms for Jane.Austen
. Here, the user's address will be converted to Jane.Austen , and this value will be used
in future table searches.

An entry is given for a remote RFC 822 user, wth . The value of

wth@widget.co.uk

is parsed as an RFC 822 address. Then follows an entry for a remote X.400 user, pc . The
value

“/I=P/S=Principle/O=Widget/PRMD=Widget Co/ADMD= /c=gb/”

would be parsed as X.400 address. The quotes (“ “) are needed as the entry contains a space
which is a field separator.

Finally, the entry f.chopin is an external synonym. The address f.chopin will be
replaced by f.chopin@foo.bar for the originating address and further lookups of the
aliases table will be disabled. It will not be replaced in recipient addresses to which delivery
is being attempted. It may or may not be replaced for addresses in message headers
depending on the tailoring.

Use of the utility aliases found in tools/tables/aliases may help you generate useful
combinations of valid aliases from input data.

Table Based Configuration

57M-Switch Advanced Administration Guide



4.3.1.2 The users table

The users table determines the local delivery channel for a particular local user. It has the
following format:

<username> “:” <channel> [ <mta> ] [“,” <channel> [ <mta> ] …]

username can either be the local name of the user, or the wildcard value, “*”, which will
match any local user. “*” could be useful in several situations. For example:

• If most of the users for a local domain need to be routed to another MTA. The wildcard
entry would come after the entries for those local users requiring different routing, and
act as a catch all. This is likely to be the most common use of the wildcard entry.

• If address conversion is required for some users in the domain, and only some of the
addresses that do not require conversion are known.

• Where the X.500 Directory is used to hold P3 delivery information for all local users,
but routing is table based. A wildcard entry in the users table would avoid the need to
add entries for all these users.

channel specifies the name of a local delivery channel on the MTA. This parameter is
mandatory, but is ignored if a remote MTA is included.

mta is the local machine on which the mailbox resides. If no MTA is specified, the channel
may be used for delivery to any MTA. If an MTA is present and is not the local machine
(loc_dom_mta) then the message will be sent to that MTA by an appropriate channel and
the channel parameter is effectively ignored - the normal routing tables will be used to
reach that host. This should only be used for internal shuffling between several MTAs that
are responsible for the same domain.

Example of Users Table

############## extract of ‘users’ table #########################
Alina.DaCruz:822-local mta1.sales.widget.co.uk
Cristopher.Marlowe:822-local mta2.sales.widget.co.uk
Jane.Austen:822-local mta1.sales.widget.co.uk, p3 Peter.Principal:822-local mta1.sales.widget.co.uk
X.400-users:list
info-server:shell

The example above illustrates how the various local users will receive mail, and on which
machines their mailboxes reside. In this example mta1.sales.widget.co.uk is the
name of the local MTA. Mail for Christopher Marlowe is to be sent to the remote MTA,
mta2.sales.widget.co.uk. The appropriate channel table will define which channel
should be used to reach this MTA. In this entry, therefore, the 822-local channel entry
is ignored.

A user can have several channels for local delivery. For example, Jane.Austen can have
her RFC 822 mail delivered by the 822-local channel, and her X.400 format mail delivered
by the p3 channel.

An entry for a distribution list is also shown, and the entry for info-server shows the
shell channel rather than a local delivery channel.

Using the wildcard entry for rerouting

############## extract of ‘users’ table ##################
Alina.DaCruz:p3 mta1.sales.widget.co.uk
Jane.Austen:slocal mta1.sales.widget.co.uk
Peter.Principal:p3 mta1.sales.widget.co.uk

Table Based Configuration

58M-Switch Advanced Administration Guide



info-server:shell
*:smtp mta2.sales.widget.co.uk

In the example above, Alina DaCruz and Peter Principal require their mail to be
delivered by the p3 channel. Mail for Jane Austin needs to be delivered using the slocal
channel, and mail for info-server is routed to the shell channel. Mail for all other
local users is routed to the remote MTA, mta2.sales.widget.co.uk, by the appropriate
channel. Note that the smtp channel entry is therefore ignored, because
mta2.sales.widget.co.uk is not the local MTA.

4.3.1.3 The 822 Local Table

The local table, held in the file ch.local , is an example of a table accessed by different
channels; both 822-local and slocal channels use it in order to find out where and how
to deliver mail to registered users.

The LHS is the registered users mail address. The format of the RHS is key=value. The
following table of key/value pairs are allowed:

uid: The numeric userID used to deliver the message. This is set to zero on Windows.

gid: The numeric groupID used to deliver the message. This is set to zero on Windows.

username: A user name found in the password file. If this entry is set, it sets defaults for
uid, gid, shell, home and directory.

directory: The directory to change to before starting delivery. This implies CWD for any
files which use relative path names. If it is not set it defaults to home.

mailbox: The name of the mailbox if default delivery is being done.

shell: The user's shell and the one which is executed to run pipes etc.

home: The user's home directory.

mailformat: The default format to deliver mail in; this can be either pp for MMDF/PP
style mailboxes, Unix for sendmail compatible style or maildir for maildir format
delivery (the default is pp).

When using maildir format, the mailbox key must be specified as well, and identifies
the root of the maildir directory structure into which to deliver.

Note: maildir format delivery is not supported on Windows

restricted: this is set to true if the user is restricted. In restricted mode the user cannot run
arbitrary programs on delivery and cannot change the PATH environment variable.

mailfilter: The mailfilter file to use. This defaults to the name of the mailfilter global tailor
variable in the users home directory. A value of none disables this feature.

sysmailfilter: The system default mailfilter file . A keyword of none′ disables this
facility.

searchpath: The directory to look for binaries that the user can run in restricted mode.
This variable defaults to (BINDIR) .

opts: Values in this field can include:

• options passed via $(opts) to mailfilter processing.

If the restricted mode is in force, then the .mailfilter file processing is reduced in
functionality as follows:

Table Based Configuration

59M-Switch Advanced Administration Guide



• The user is not allowed to set the variable PATH to search other directories for programs.
(More accurately, this variable can be set, it is just ignored.)

• The processes executed by the pipe command must be in the directory named in
searchpath (defaults to (BINDIR)).

• The processes executed by the pipe command must be executable by the system call
exec(2) . (For example; redirection and shell syntax will not be obeyed).

For an entry in this table to be valid, it must either contain at least a Unix login ID, or have
a userID/groupID/directory to deliver to. For example:

Arthur.Katz:username=arthur home=/cs/users/vs1/arthur
Jane.Austen:username=jausten opt=“poppasswd=kb5GD-yr18_K2”
Peter.Principle:username=pp
bug-filter:uid=32767 gid=1001 mailbox=/usr/spool/mail/bugs
mailformat=unix

NOTE: For compatibility with earlier releases the following format is allowed:

name “:” <unix ID> [<home directory> [<file>]]

If there is an entry for default in the table, this can be used to default any of the parameters.

4.3.1.4 The P3 Table

An example P3 table file is:

default: lpass=“mtapassword”, lmta=“Widget.co.uk”
/I=F/S=Austen/O=Widget/ADMD=XX/C=GB/:rpass=“x/XJeZt/EoZ5s”,
   rpsap=‘“407”/Internet=193.63.86.1’,
   rmta=“cn=Frank Austen,o=Widget,c=gb”

/I=C/S=Bronte/O=Widget/ADMD=XX/C-GB/:rpass=“j/HvctaySpDrg”,
   rpsap=‘“407”/Internet=193.63.86.1’,
   rmta=“cn=Charlotte Bronte,o=Widget,c=gb” ||

The key to each entry is the OR-address of the MTS user. The fields used are:

lmta: The name of the MTA which will be provided in bind credentials to authenticate the
MTA to the MTS user.

pass: The MTA password that will be provided in bind credentials to authenticate the MTA
to the MTS user. The password is in plain text.

rpass: The MTS user password which must be provided in bind credentials to authenticate
the MTS user to the MTA. If this field is absent, no credentials need be presented in a bind
request or in a response to the MTS user. The password is encrypted. You can use
(EXECDIR)/tools/mkpasswd to generate encrypted passwords.

rpsap: The Presentation Address which will be called by the MTS user when establishing
an association to deliver messages. This is normally the address of a p7server process.

lpsap: The Presentation Address that the MTA will use as its calling address when
establishing an association with the MTS user to deliver messages. This is an optional
entry, and is rarely used.

rmta: The Distinguished Name (DN) of the MTS user, which will be used as the called
application-entity-title when establishing an association with the MTS user. This is required
when the MTS user is the Message Store.

Table Based Configuration

60M-Switch Advanced Administration Guide



4.3.1.5 The List Table

The ch.list table is used by the list channel to expand local distribution lists. Entries in
this table have the format:

<listname> “:” [<moderator>   …] “,”
file=<filename> <mail address>   … “,”
description

listname: The name of the distribution list, e.g., listname .

NOTE: In order for the list to form a valid local address, the local part of the name,
listname in the above examples, must have an entry in the local users table, specifying
that messages addressed to the list should be delivered via the list channel.

moderator : The UNIX IDs/login names of the moderators of the list. This element of the
table entry is purely for the use of the distribution list management tool, mlist . Anyone
with one of the specified userIDs may use mlist to modify the contents of the list.

file: The file containing the members of the list. If <filename> is not a fully qualified
pathname, the required file will be assumed to be under the tbldir directory structure.
The format of such files is one member's address per line.

NOTE: The file must exist for mlist to be able to be used on the corresponding list (i.e.
mlist is unable to create the files only modify them). Any lines in this file starting with
the character # are ignored.

mail address: An address of a member of the list.

NOTE: Because they are specified in the list table itself, mlist cannot be used to modify
such members.

description: A short description of the purpose of the list. This description is output by
mlist when requested.

NOTE: In order to form a valid entry in the list table, each entry must be on one line and
must contain two and only two commas.

Comment line in tables start with a # . The list table extends this mechanism further.
Comment lines that are printed by mlist start with #Comment: . This allows the list table
to have two levels of comments, one for the editor of the list table and one for the user of
mlist .

Example of List Table

# extract of ‘list’ table
# Comment: -*- Example lists -*-
filelist:jea, file=/crg/pp/mainlist, a list with members in a file
strlist:pp|jea, j.austen|p.principle|a.mole, a list with members in a line
mixedlist:aam, a.mole|file=mixedlist, another list 

If you have a large sendmail aliases file to convert, you may find the utility
make-lists(8) of use. make-lists(8) is found in the Tools directory. This utility
attempts to convert lists of names into a format suitable for use in the list channel.

NOTE: It does not convert all aliases table entries, only lists.

4.3.1.6 The Shell Table

The ch.shell table is referenced by the shell channel when converting from the recipient
address to the commands to execute in its place. Entries in this table have the format:

Table Based Configuration

61M-Switch Advanced Administration Guide



<address> “:” <user id> “,” [<timeout period>[‘|’<qualifier>]]
“,” <command line to execute>

address: specifies the recipient address, e.g., shellprog .

NOTE: In order for this to form a valid local address, the local part, shellprog in the
examples, must have an entry in the local users table, specifying that messages sent to the
address should be delivered via the shell channel. This address can be just the local part of
the address, the whole address, or the special key “*”, which is used if no specific entry
for the address is found. The addresses which are to be delivered to the particular shell
channel, should be configured to route to this channel. This is done for Directory based
routing by setting the MTA channel appropriately for the user in EMMA, or for table based
routing by setting the channel in the corresponding user's table entry.

user id: specifies the user to run as when executing the commands. This ID is resolved
using /etc/passwd . Alternatively it may be specified as <uid>/<gid> to run as an arbitrary
user and group.

timeout period: specifies how long, in seconds, the commands should be allowed to run
before the shell channel kills them off. If the timeout period is not specified, the commands
are allowed to run for the default period of time, five minutes. If the period is zero then the
shell channel will not enforce a time limit for the commands.

qualifier: qualifies the behaviour of the shell channel. This qualifier is optional appended
to the timeout period with a "|" separating the two values. If the qualifier is set to the string
solo then the shell channel will restart (fork) the command line for each bodypart.

command line: specifies the command line to execute. If the program name is not a fully
qualified pathname, the program is assumed to be under the directory specified by chandir.
Arguments of the form $(key) will be expanded as described below.

Shell Channel Expansion Macros

ExpansionKey

the address of the sender of the message (original
format)

sender

the distinguished name of the sendersenderdn

the address of the sender (rfc822 format)822sender

the address of the sender (X.400 format)400sender

the address of the recipient of the message (original
format

recip

the distinguished name of the recipientrecipdn

the address of the recipient (rfc822 format)822recip

the address of the recipient (X.400 format)400recip

the queue ID of the message (e.g. msg.12345–0001)qid

the user-agent ID of the messageua-id

the P1 ID of the messagep1-id

the user name of ID of the delivery processuserid

the group name or ID of the delivery processgroupid

the size in bytes of the messagesize

the name of the delivery channelchannelname

When running, the shell channel pipes all the message bodyparts, in order, to the program's
standard input. The shell channel understands an exit code of 0 as success and anything
else as failure. If failure is reported and output from the process is detected, this text will

Table Based Configuration

62M-Switch Advanced Administration Guide



be used for the supplementary information of the delivery report. Additionally, if the
message starts with the format <NUMBER>/<NUMBER>: then this will be interpreted as an
X.400 reason and diagnostic code.

An example of a shell table is shown below.

################## extract of ‘shell’ table ##############
nullshell:pac,60, sh -c “/bin/cat > /dev/null”
useful shell: jpo, , usefulshellprog $ (ua_id)
lynx:pp, 0|solo, /usr/ucb/lpr -Plynx

Table Based Configuration

63M-Switch Advanced Administration Guide



Chapter 5 Content Checking
This chapter covers the advanced Content Checking features of the Isode M-Switch, giving
detailed descriptions of the Quarantine system and how it fits into the Messaging Audit
Database

5.1 Advanced Message Audit Database
Features

5.1.1 Quarantine

If you are using the content checking features of the M-Switch described in M-Switch
Administration Guide  you can enable the M-Switch Quarantine. This feature enables
messages which fail the content checking checks to be placed into quarantine. For more
details on the Message Audit Database (on which the quarantine system depends) see
M-Switch Administration Guide

Messages in quarantine can be released and resubmitted into the MTA. M-Switch contains
features to allow this by either the recipient or an operator.

An operator wishing to do this must search for the message using the message tracking
feature in the quarantine view shown in Figure 5.1, “Quarantine view”.

Figure 5.1. Quarantine view

Right clicking on the message brings up a similar set of options to the message tracking
view described in M-Switch Administration Guide  with the addition of an option to release
the message from quarantine.

Content Checking

64M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#ContentChecking
../swadm/SWADM.pdf#ContentChecking
../swadm/SWADM.pdf#MsgAuditDB
../swadm/SWADM.pdf#MConsole_F_05


5.1.2 Acknowledgement tracking

Messages traversing the MTS can result in delivery reports (positive or negative) and /or
read receipts (also positive or negative).

The collective term for delivery reports and read receipts is 'Acknowledgement'.

Using the Acknowledgement Tracking view you can perform correlation of
acknowledgements with subject messages. This allows you to check if messages for which
positive delivery reports have been requested have received a delivery report and/or read
receipt.

The View enables you to search for and display messages based on various combinations
of requests and actual acknowledgements.

Use the Expect ... within and Times start when settings to specify how much time is
allowed to pass before a missing acknowledgement will be treated as indicative of a possible
problem. These times can vary according to message priority.

Use the Messages to show option to control which messages are shown, based on the state
of their acknowledgement. For example, you can choose to show only messages which
have had successful delivery reports, or all messages which have not yet had an
acknowledgement. Various "preset" values are offered, or you can use the Advanced...
option to generate a filter which is specific to your requirements.

A typical use of this view is to display all messages for which an acknowledgement is
expected but has not been seen, so that you can take actions such as redirecting or
resubmitting them. See Figure 5.2, “Message acknowledgement view” for an example of
how such a display would look.

You can set a certain threshold to configure the time in which the reports or read receipts
are expected. This time can vary according to the priority of the message.

You can select that messages in particular states such as successfully delivered/read; delivery
failure; etc are displayed.

Figure 5.2. Message acknowledgement view

It may be that you know that there are certain addresses which will never generate
acknowledgements (for example if they are addresses outside your organization which do
not reliably generate delivery reports).

Content Checking

65M-Switch Advanced Administration Guide



You can configure the Audit DB as shown in M-Switch Administration Guide  to set rules
by which messages are selected as being displayed as having missing alerts. You can do
this by specifying addresses which will never be considered as being unacknowledged, or
by specifying messages which will be considered as unacknowledged (unless the message
also matches an exclude).

Figure 5.3. Message acknowledgement config

5.2 Content Checking

5.2.1 CCCP Checking Channel

The Content Checking and Conversion Protocol (CCCP) is a means for a checking channel
to communicate with a server process which can perform both content checking, and also
change the content. It can cause the message to be non-delivered, or deleted for each
recipient, or the message can be redirected for a recipient.

This checking channel can be used in the place of the standard checking channel. They
cannot be used together.

Which channel is selected for checking is configured in exactly the same way as for the
standard checking channel, using information in the auth.channel, auth.mta and
auth.user tables, and selecting the channel using the content in values, and also using
the recipient address looked up in the channel's mtatable (if any).

5.2.1.1 CCCP Channel tailoring

The channel type should be ‘check’. The program should be cccpchan. The Content in
should specify the content types which this channel checks. The channel may have an
mtatable, which is used to specify the recipient addresses for messages to be checked by
this channel.

Currently, a channel specific variable is used to configure the connection information for
the CCCP server. The variable is called server and the value can be hostname[:port]

Content Checking

66M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#MConsole_F_05


for a TCP connection to that host. The hostname can be an IP address, and the port number
can be omitted, if the default port of 18003 is to be used. On Unix systems, the connection
can also be made to a Unix socket, which is specified by a value which is the full pathname
of the socket (i.e. it must start with ‘/’).

5.2.1.2 Checker Channel Configuration

The standard checking channel has a configuration file which controls how the channel
processes different components of the content being checked, and how changes to that
component can be made, if required as a result of the action to be taken on checking. The
file is an XML file which is very similar to that used by content conversion. It is located
in the same way, except that the default name is channel-name-checker.xml.

Rather than output information for different content types, the checking channel
configuration has check nodes, which are very similar to convert nodes for the content
conversion. Each check node matches content components using the same features as
convert nodes. The node has filters, which are used to extract and convert data, and also
perform specific checks. In addition, a check node can have keeper, repairer and
replacer nodes. These have the same format as shaper channel convert nodes. They are
used to make changes to the component for the resulting content, for the cases where the
component is to be retained, but changed in some way. keeper is used when the old version
is to be annotated, repairer is used when the enclosed data is to be changed for repaired
data, and replacer is used to generate a new component from replacement text. If the
component is to be retained, and there is no keeper node, then there is no change. There
are some specific filters provided for this, and standard shaper channel filters are also used.

5.2.1.3 Checker Channel Filters

:bodyscan

This is used for anti-virus scanning. The canonical data of the component is extracted and
passed to the anti-virus software. It takes no parameters.

:textscan

This is used for text regular expression matching in the checking channel. It should be
passed text converted to UTF-8, if the canonical data is not already UTF-8. It takes no
parameters.

:wordscan

This is used to find words which are checked against the word scores. The input data should
be UTF-8. It takes no parameters.

:htmlscan

This applies the HTML regular expressions. The input should be UTF-8, and the output is
the data without the HTML markup (e.g. suitable for passing to :wordscan). It takes no
parameters.

:mimeheaderscan

This scans the heading of a MIME body, including multiparts and normal bodies. It takes
no parameters.

:rfcheaderscan

This scans an Internet message heading, looking at fields such as the From:, To: and
Subject:. it takes one parameter outer which if present indicates to the checking process
that this is the outer message heading.

:ipmheaderscan

Content Checking

67M-Switch Advanced Administration Guide



This performs limited scanning of an X.400 IPM heading, e.g. of the subject. It takes no
parameters.

:uudecode

This extracts uuencoded from a text body, and generates a new component from that data,
for checking.

:bodyrepair

This provides to later filters the canonical data as repaired by the anti-virus software. It
takes no parameters.

:bodyreplace

This provides to later filters the text to be used to replace the body part. Other filters should
be used to create the correct body part type for the enclosing content type. It takes one
optional parameter, text. If present, this is the replacement text. Otherwise the replacement
text from the channel rule is used.

:rfcheadernotate

This annotates an Internet message heading, using information provided by the action rule.
The subject can be annotated, and additional heading fields added. It takes no parameters.

5.2.2 Virus Checking for AMHS Installations

A common requirement for AMHS installations is that File Transfer bodyparts within
X.400 messages are checked for viruses, while other bodypart types (e.g. IA5Text) are not
checked (to improve performance).

A number of configuration steps are needed to set this up:

• Create and configure a suitable checker channel. This will normally be called mhscheck
if it is intended for X.400 content checking. It will have content in values of p2,p22.
You will need to ensure that the channel's Anti-Virus tab has settings for the Anti-Virus
engine which you are using. A suitable Shaper configuration file which causes only File
Transfer Bodyparts to be checked is included in the release
((SHAREDIR)/switch/mhscheck-checker-ftbp-only.xml). This must be selected as the
XML configuration file option for the channel.

• Create a directory called (ETCDIR)/switch/msgcheck, and create a file named
standard.rule in this directory. The file should contain the lines:

            rule program VIRUS {pushv virus_notok pushv virus_replaced add}
            rule action VIRUS reject
            rule priority VIRUS 100
            rule status VIRUS 5.8.48

The second rule configures the action to be taken if a virus is detected; reject indicates
that a non-delivery report should be generated.

The final line configures the X.400 non-delivery report reason and diagnostic codes
which will be used in any non-delivery report which is generated. The string 5.8.48
indicates that a reason code of "transfer-failure-security-reason" and diagnostic of
"unable-to-complete-transfer" will be used.

• Optionally configure supplementary information. The supplementary information for
non-delivery reports is generated in the Tcl script which provides the interface between
the checker channel and the anti-virus package. For example, if you are using the ClamAV
package, the Tcl script is (LIBDIR)/msgcheck/clamav.tcl. By default the string used is

Content Checking

68M-Switch Advanced Administration Guide



simply Found $virusname (where $virusname is substituted with the virus name
string returned by the anti-virus package. If necessary, this string can be modified; no
further action is needed.

• Run the cachebuild program to build the mhscheck channel's configuration cache. The
program takes a single argument which is the name of the channel for which it is to build
the cache.

• Set up an authorization rule which causes messages to be checked. This can be as simple
as a rule of type check with the mhscheck channel selected: this causes all messages
to be checked. If required, filters can be used to restrict checking to messages which
arrive on specific inbound channels or from selected Peer MTAs.

• Configure your anti-virus package so that it can be used by M-Switch.

• Test the configuration using the standard EICAR sample virus.

Content Checking

69M-Switch Advanced Administration Guide



Chapter 6 Content Conversion
M-Switch can be configured to modify the contents of messages. This includes the ability
to act as a Gateway between the threee principal protocols of X.400, Internet and ACP127
messages.

6.1 Content Conversion in M-Switch

Purpose of Content Conversion

Normally, M-Switch passes the message content unchanged and it does not look inside the
message. However, sometimes it is necessary to make changes to the content of a message.

• Converting between Internet and X.400 contents in a MIXER gateway.

• Changing addresses within the message heading in a boundary MTA.

• Conversion of one body part type to another type which the recipient will accept.

• Verification of S/MIME signed messages and extraction of the signed body.

• Using S/MIME to sign messages.

• Extraction and insertion of security labels.

Content conversion can also move information from the message envelope into the content,
and move information from the content into the envelope.

• When Content Conversion is done

• General Configuration for Content Conversion

• Shaper Channel Operation

• Shaper Channel Configuration

• Specific Conversion Filters

• MIXER conversion features

• Security Configuration

• DKIM Configuration

6.1.1 When Content Conversion is done

The routing calculation (see  M-Switch Administration Guide) results for each recipient
of the message a set of channel and mta pairs. The message has an inbound content type,
an inbound header type (except for some X.400 content types) and, for X.400 messages,
a set of "encoded information types". These are compared with the content types, header
types and encoded information types which are accepted by the channel, MTA and recipient.
If the message can be accepted for the route by the recipient, then content conversion is
not performed, and the message is passed unchanged. If there is no route which can be
taken by the unchanged content, then content conversion needs to be performed.

M-Switch then looks for a suitable conversion channel. This is chosen from the channels
which have the type shaper, and for which the inbound content type of the message has
a match in the Content In value for the channel. If no suitable shaper channel is found,
then the message is rejected or non-delivered.

Content Conversion

70M-Switch Advanced Administration Guide

#ConnectOtherX400MTAs_01_01


A message with more than one recipient may require conversion for some recipients and
no conversion for others. If conversion is required for more than one recipient, then the
conversion can be different for different recipients. This is handled by a single channel.

6.1.2 General Configuration for Content Conversion

In order that Content Conversion be performed when required, it is important that various
aspects of the overall M-Switch configuration be considered.

Inbound Channel Configuration

Sometimes it is desired to perform different conversions on the same basic content type
depending upon the source of the message. For instance, messages which are newly
submitted might have various updates performed such as inserting a missing Message-ID.

This is achieved by separating the sources using different inbound channels. Then the
channels can be configured with a content subtype. This subtype can be used in the selection
of component converters.

Outbound Channel Configuration

When the inbound message is compared with the outbound route, the outbound channel
contributes some items.

Content out
This is set to the list of the content types which this channel will accept. If the list is
empty, however, the channel will accept any content type.

Content subtype out
This is an optional value which enables different conversions to be performed for the
same basic content type.

Bodyparts out
This is set to the list of encoded information types which the channel will accept. If
the list is empty, then any encoded information type is accepted.

Component converters can specify the outbound subtype required, and the encoded
information types they produce. These data are used to select the converters to be used.

Recipient Configuration

For X.400 recipients, it is possible to configure in their Directory white pages entry attributes
indicating:

• the content types accepted by the recipient

• the encoded information types which are permitted or forbidden

6.2 Shaper Channel

6.2.1 Shaper Channel Operation

First, the channel will 'explode' the content to discover the components of the message.
That is the different headings and body part types within the content. For MHS content, it
is possible to suppress this, and the message content is considered as a whole, with no
subdivisions. The message envelope is also considered as a component of the message, as
the output heading of the converted content can contain some fields from the envelope.

Content Conversion

71M-Switch Advanced Administration Guide



It is possible for the channel to check S/MIME signatures at this stage. If a signed body
contains an encapsulated S/MIME body, then the exploding process will consider that
body, which could itself be a multipart containing other bodies. Also, if the S/MIME
signature contains a security label, this is made available for use within the message envelope
(if an Internet S/MIME message is being converted to X.400, for example).

Each recipient has a set of pairs of channel and MTA to which the message can be
transferred. The shaper channel considers each recipient separately, and considers each
outbound possibility. However, if the message has more than one recipient, and two or
more recipients need the same conversions, then the recipients can be associated with the
same output content from the conversion process.

Each output route for each recipient is considered in turn. If the route has multiple content
types, then each content type is considered, along with the encoded information types
allowed or excluded for the channel and recipient. The shaper channel has configured a
number of possible output content types, which gives the conversions for different
components in such a content. For each component in the content to be converted, the
appropriate conversion is identified by matching the properties of the input component.
Also, if the conversion has a set of encoded information types, these are considered to
check if the conversion can be used. For some components there are defaults conversions.
Matching conversions to components can use feature of the parameters of the component,
such as the body part type. Also, there is a limited ability to match the data within the body
(c.f. the file command found in Unix systems).

It can be that more than one conversion matches the input component. In this case the
lowest cost conversion is used, the cost being a parameter of the conversion. Therefore, if
configuring conversions, more general matches should have a higher cost than more
particular matches. Also, less preferable conversions (e.g. because there is data loss) should
have higher cost that more preferable conversions.

It may be that there is no content type accepted by the channel, or no set of conversions
which can be used on the input content to convert it to the proposed output content type.
In that case, the message is non-delivered for that recipient. It is also possible that the
originator of the message may have indicated that the message cannot be converted, or that
conversion with loss is prohibited. Then the message is also non-delivered. A conversion
can be flagged as lossy for the latter case.

If conversion is possible to the target content type, each conversion to be used has a cost,
which gives an overall cost to the conversion. If there are different possible output content
types, then the output type used is the one with the lowest overall conversion cost.

Having chosen the content type and set of conversions, the shaper channel generates the
output content by using the appropriate ‘flattener’. This considers each input component,
and applies to it the conversion action. This will often involve taking the information for
the input component, and applying a sequence of filters.

6.2.2 Shaper Channel Configuration

6.2.2.1 Tailoring Configuration

Channel Type
should be shaper

Program
should be shaper

Configuration file
If omitted, the name of the file is derived from the name of the channel, by adding
-shaper.xml. You can configure a specific file by giving its name or its full pathname.

If the configuration file name is not a full pathname, then the program looks in two places:

1. subdirectory switch of the ETCDIR

Content Conversion

72M-Switch Advanced Administration Guide



2. subdirectory switch of the SHAREDIR

So, on Windows it will look, typically, first in C:\Isode\etc\switch and then in
C:\Program Files\Isode\share\switch. For Unix it will look first in
/etc/isode/switch and then /opt/isode/share/switch

Default configuration files for single protocol and MIXER configurations are provided in
SHAREDIR/switch. If you want a default MIXER setup, you should set the configuration
files as follows

mimeshaper
mimemixer-shaper.xml

mhsshaper
mhsmixer-shaper.xml

If you need to change the configuration file, you are advised to place your edited file in
ETCDIR/switch. The SHAREDIR/switch location is for files provided by Isode.

6.2.2.2 Tailoring for S/MIME and Security

The channel can verify S/MIME signed messages, and can generate S/MIME signed
messages. It can also process security labels from S/MIME messages, the envelope of
X.400 messages, and through heading and first line of text (FLOT) text labels.

Currently the configuration for these areas is performed by setting channel specific variables
(in the Advanced tab in EMMA). There are two methods for setting up data for S/MIME.
From R15.2 a database is used. This can be a permanent file, in which case the configuration
uses:

securityDB
File path to security database. If relative, then relative to ETCDIR.

securityDBpass
Passphrase for the security database, if required. The value can be encrypted with the
M-Switch server master key.

signing-id
The URI identifying the private key, or corresponding certificate, used to sign messages.

The use of a permanent database is required for encryption and decryption. For encryption,
the database should have loaded suitable certificates to be used for key encipherment or
key wrapping. The encryption code will look for a certificate using a suitable subject
alt. name value. For a recipient this will be either an rfc822 address or X400 address.
For a peer MTA, this will be the DN of the peer's channel configuration entry, or a dnsname
of its hostname. It may be necessary to associate a meta-data value with the certificate in
the database, so that the shaper channel can identify the correct certificate to use when
encrypting for that user or peer MTA.

The older channel variables can be used to configure an ephemeral database for signing
and verification:

x509_p12
The pathname for a PKCS#12 file which contains the private key and certificate for
the digital identity to be used for signing messages.

x509_pphr
A text file containing the passphrase for the PKCS#12 file.

x509_certs
The pathname of a directory which contains certificates which are used as trusted
certificates when verifying signed messages. In addition, if a PKCS#12 file is specified,
any trust anchors within that are used.

Content Conversion

73M-Switch Advanced Administration Guide



x509_crlcheck
Should contain the value true or yes to cause the certificate verification procedure to
attempt to obtain certificate revocation lists. LDAP access for this uses the MTA-wide
LDAP access information.

The shaper channel uses configuration files described in  M-Switch Administration Guide)
for label extraction and insertion. These are described in the following sections. The channel
variables can be used to set up the security policy called @default@.

security_policy
The pathname of the security policy file to be used. This should be in XML format

default_label_file
The pathname of a file containing a label in XML format. The label is used when
generating an S/MIME signed message and there is no other label available.

default_label_policy_id
Object Identifier in numeric oid format which is used when an X.411 label has no
policy ID. This is only used if there is no security policy.

6.2.2.3 Configuration File

The configuration file is an XML file providing information to the channel program about
the desired changes to content. The root node of the XML is ‘shaper’, and this defines
the ‘exploder’ for the input content. This is the action which understands the structure
of the content of the message, and so can deal with the components of this content. It is
important that the exploder matches the content type presented to the channel. So the
channel's content in setting should match the exploder setting. Internet content should use
ppmime and X.400 content ppmhs.

At the next level there can be param nodes, which alter the action of the exploder. There
are output nodes, which have a content type and a flattener. The flattener knows how to
put a message back together from its components.

Each output node has a set of convert nodes. Each of these describes how to handle the
conversion of a component of the input content into a component of the output content.
The converter can have some parameters, using param node. It can have match sub-nodes,
which specify restrictions on the properties of the input component which can be processed
by the converter, and data sub-nodes which can give restrictions based on matching the
data within the component. it can have a set of eit sub-nodes, which specify the encoded
information types associated with the component resulting from the conversion (X.400
output content only). The eit values are used to ensure that the resulting content is acceptable
to the channel and recipient. The converter can have a sequence of filter sub-nodes, where
each filter performs some change on the data for the component.

6.2.2.4 Exploder configuration

There are some parameters which control the exploders.

ppmime exploder

smime-body
A space separated list of MIME body sub-types which are recognized as S/MIME
bodies. This list is checked if the MIME type is application. Typically this is set
to "pkcs7-mime x-pkcs7-mime".

smime-sig
A space separated list of MIME body sub-types which are recognized as S/MIME
signatures, for the preceding MIME body. The list is checked if the MIME type is
application. Typically, this is set to "pkcs7-signature x-pkcs7-signature".

sime-verify-fail
The value gives the action to take on a failure to verify a signature within an S/MIME
message. The values resulting in action can be abort, which will cause the message

Content Conversion

74M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#Security-Labels-overview


to be non-delivered, or mark which will add a heading to the body indicating the
failure. Any other value, or not specifying this parameter will allow signature failures
to pass. However, such a failure is always logged in the audit log.

ess-label-priority
The label priority associated with ESS labels in signed messages.

sio-label-priority
The label priority associated with labels found in SIO-Label header fields.

ppmhs exploder

This has parameters based on content types. If there is a parameter for the specific content
type, then that is used. If there is none, and there is the parameter named any, then that
value is used. The value is a list of keywords for that content type.

noexplode
Do not explode the content into its components. The result is that only “whole content”
conversion can be done. For instance, conversion to the “X400 wrap” MIME body.

pct
The content is a Protected Content Type, i.e. an X.400 content using Cryptographic
Message Syntax (CMS) for a signed or an encrypted content. This action makes the
type of the protected content available to the conversion process.

ess-label-priority
The label priority associated with ESS labels in signed messages.

6.2.2.5 Output node configuration

The output node has attributes:

type
specifying the output content type. There is a special value p2orp22 which is used if
p22 is in the list of acceptable content types. However, if P772 and/or P2 also appear
in that list, then the actual outbound content type may not be P22:

• If P772 is in the list and the message contains any P772 heading extensions, then
the content type is set to P772

• If P2 is in the list and the message contains no elements which are not permitted in
P2 (e.g. heading extensions), then the content type is set to P2.

• Otherwise the content type is set to P22.

flattener
Specifies the flattener to use. This must match the resulting output type. Use ppmime
to generate Internet content, and ppmhs for X.400 content.

6.2.2.6 Converter Configuration

The main definition can have the following attributes:

type
Indicates the type of component to which the converter applies

cost
A positive integer indicating the cost

action
Indicates the action to be taken by the converter

outtype
Indicates the content sub-type output by this converter

The different types of component are:

Content Conversion

75M-Switch Advanced Administration Guide



body
A standard data body

header
A heading

message
A message body, i.e. which contains heading and bodies

multipart
A message body containing body parts

envelope
The message envelope

content
The overall message content

The actions which can be taken are:

keep
No change

discard
Discard this component, this implies information loss.

convert
Perform conversion using the filters

implicit
Perform conversion using the filters, but forbidden if implicit conversion is prohibited

lossy
Perform conversion using the filters, but the conversion loses information, so forbidden
if conversion with loss is prohibited.

ignore
Take no action, this does not imply information loss.

merge
Combine the component with the previous component

wrap
Combine the enclosed components into a component of the appropriate type

content
The converted component becomes the whole output content. This is used to convert
a MIME "X.400 Wrap" body into an X.400 content.

extract
Used for signed items (multipart/signed or application/pkcs7-mime) and
replaces the body with the signed body, without the signature.

insert
The component and its children are flattened, and the result is then fed into the filters
for the converter.

sign
Generate an S/MIME signed body. If applied to a heading, then the following body is
signed. If applied to a content, then the signed body is a message/rfc822 containing
that content. This action has converter parameters which control the signing.

encrypt
Generate an S/MIME Enveloped Body (i.e. encrypted). Applied to a heading to encrypt
the following body, to a content to generate a message/rfc822 body which is then
encrypted. For MIME (822) output only. This action has converter parameters which
control the signing.

Content Conversion

76M-Switch Advanced Administration Guide



triple-wrap
Generate a Triple-wrapped content, i.e. a signed content within an encrypted content
within a signed content. Applies only to a content component, and for X.400 output
only. This action has converter parameters which control the encryption.

failed
Indicate that the conversion has failed

If there is no matching converter for a component, then defaults apply. For a body or header,
the default is the equivalent of a ‘failed’ converter. For a message, multipart or content,
the default is a “wrap” converter, and for an envelope, an “ignore” converter.

Signing configuration

If the action for a converter is sign, then this can be controlled by a parameter named
SmimeAction. If this is present has the value signed, then the signing will generate an
application/pkcs7-mime body part. This embeds the signed body within the data of
the S/MIME body. If the parameter is not present, or is some other value, then the signed
body is combined with an application/pkcs7-signature in a multipart/signed body.
Here, the signature information is separate from the signed body.

When generating an X.400 signed content, it is necessary to specify the content type to be
used when generating the content to be signed. This is done using the input-type
parameter. The default value is "p2orp22".

Encryption configuration

If the action for a converter is encrypt or triple, then there are some parameters for the
converter which control the encryption process.

algorithm
The name of the algorithm to use as the content encryption algorithm. This uses the
OpenSSL algorithm names. If omitted, "aes-128-cbc" is used.

encrypt-for-peer
If set (to any value), then a suitable public key is sought for the relevant peer-MTAs
as well as the recipients of the message.

verify
If set to "true", the recipient or peer MTA certificates are subject to certificate
verification.

When generating an X.400 triple-wrapped content, it is necessary to specify the content
type to be used when generating the content to be signed. This is done using the input-type
parameter. The default value is “p2orp22”.

Match configuration

Match items are used to match attributes of the component being considered. Each match
item must match for the converter to be considered. Each match has the name of a
component attribute, and an optional value. If the value is omitted, then the match is "true"
if the attribute is present in the component, and "false" otherwise. If the value is present
then it is a regular expression, and the result of the match depends on the match of the
regular expression on the actual value of the component's attribute.

The match element can have an attribute @child@, which enables the test to be on attributes
which belong to a component which is a descendant of the component for which the match
is being evaluated. The first child of the component is always considered. The value of the
attribute is an integer giving the number of levels to descend. This tests an attribute which
is the immediate child:

<match name="Type" child="1">message</match>

Content Conversion

77M-Switch Advanced Administration Guide



The attributes available depend upon the exploder, which creates the components.

Data match items are a method of checking the data within a normal body part. They check
the ‘canonical’ data for the body, which is the data with any transfer encoding removed.
A data item has attributes:

type
The data type to be matched

offset
The offset of the value within the canonical data

Data types can be:

byte
A single byte

short
A two byte integer in little-endian order

long
A four byte integer in little-endian order

beshort
A two byte integer in big-endian order

belong
A four byte integer in big-endian order

string
A string value.

Integer values for the offset and the value to be matched can be expressed as decimal, octal
(leading ‘0’) or hexadecimal (leading ‘0x’).

String values, if they end in “/c” or “/C” then the characters before the ‘are matched
without regard to case. If there is no‘ in the match value, then the string can
contain escapes for non-printing characters. These are similar to normal ‘C’ string escapes.

For a converter generating an X.400 body-part, the encoded information types which are
associated with the body-part are specified by eit nodes. The value is either the standard
X.400 name for a basic encoded information type (c.f. X.411) or is the object identifier
expressed in numeric oid format for extended encoded information types.

Filter configuration

A filter has a command attribute which identifies the filter. The name comprises the name
of the library containing the filter, a colon, and then the name of the filter within the library.

A filter may have configuration parameters.

6.2.3 Specific Conversion Filters

6.2.3.1 Internet Message filters

ppmime:header

This filter performs various actions on an Internet message heading, including the heading
within a MIME message/rfc822 body.

The filter can perform address normalization, which means following address synonyms,
and ensuring that domains are fully qualified. Standard heading fields which contain
addresses are considered, and other fields can be added using a parameter with the name
address and the parameter value the field name.

Content Conversion

78M-Switch Advanced Administration Guide



The parameters external and internal control which address synonyms are followed.
This enables one to convert between internal and external versions of an address. These
are normally used in conjunction with suitable header sub-types. If neither of these is
present, then no address normalization is performed.

If the parameter normalize-all is present, if an address has a route, then all domains
within the route are normalized. Otherwise only the leading domain is normalized.

If the parameters add-date or add-message-id are present, then if the heading does
not have a Date field or a Message-ID field, respectively, then a suitable field is added.
These should only be used when the message has been locally submitted.

The parameter strip-trace, if present, causes ‘trace’ fields (e.g. Received fields) to be
removed from the heading. This can be used to suppress information about internal networks
at a boundary.

The parameter strip-most, if present, causes most fields to be removed, apart from a list
of standard fields. This list can be added to by using the keep parameter. Each such
parameter defines another field which is to be retained.

The parameter fold controls the folding of field values. The value should be an integer
between 20 and 200, which defines the target length of a line. Folding white space is inserted
to keep heading lines within that line length, if possible.

[R15.0 and later] The parameter add-disposition-notification-to forces the
addition of a Disposition-Notification-To field, if one is not already present. If the
parameter name is not one of the above, then it is treated as a heading field name. The
action to be taken depends upon the value of the parameter:

address
The field contains addresses, which will be normalized.

keep
Prevent the field from being removed when strip-most is used.

strip
[R15.0 and later] Strip the field from the heading.

ppmime::charset2utf8

This filter is used to convert the data in a MIME text body from the character set to UTF-8.
Most body part generation filters require text in UTF-8 as input, so this is a prerequisite
for this.

If the parameter unknown is set, then if the character set for the body is not known, then
the character set which is the value of the parameter is assumed. If this parameter is not
set, and an unknown character set is found, then the conversion will fail.

ppmime:encode

This filter is used to generate the MIME encoded data from the canonical data for a body.
It has one mandatory parameter, Encoding, which should have a value which is a valid
value for a MIME content transfer encoding (c.f. RFC 2045).

ppmime:text

This filter is used to generate the canonical data for a MIME text body. If the parameter
charset is specified, then this gives the output character set, otherwise us-ascii is used.

The parameter StringFirstPageBreak can be specified with the value true to remove
any initial page break (the character sequence CR FF).

ppmime:insertsmimeauth

Content Conversion

79M-Switch Advanced Administration Guide



This filter is used to insert a heading field Authentication-Results recording the result
of checking signatures on S/MIME signed data.

The optional parameter authority can be set, its value giving the authority field in the
field value. If this is not set, then the value of the MTA parameter loc_dom_site is used.

6.2.3.2 X.400 Filters

ppmhs:downgrade

Some X.400 IPM body-parts come in equivalent forms, one the ‘basic’ form and one using
the extended body part form. Only the former are permitted in X.400 1984 IPMs (P2). This
filter converts the extended form to the basic form, so that the message can be downgraded
to P2. It has no parameters.

ppmhs:heading-downgrade

This filter removes any features from a P22 heading which are not permitted in a P2 heading.
It has one parameter, downgrade, which controls how OR-addresses are downgraded. It
takes these values:

x419
Follow the downgrading rules as specified in X.419

common
In addition to the X.419 rules, a printableString CommonName attribute is converted
into a DDA with the type ‘common’, and value from the attribute.

rfc1328
Use downgrading as specified in RFC 1328.

ppmhs:general-text

Take the canonical text input (in UTF-8), and generate a general-text body part using the
configured character sets. The character sets are configured using

Charsets
The value is a space or comma separated sequence of integers. Each integer is the ISO
registration number of a character set.

Charset
The value is a mnemonic for a set of character sets. It can be iso-8859-n where the
suffix is an integer in the range 1 to 16, and the character sets used are equivalent to
the given ISO 8859 character set. It can be iso-2022-jp which is equivalent to the
character sets used in that encoding. If the value of the parameter is not one of these,
then iso-8859–1 is assumed.

ppmhs:ftbp

This generates a file-transfer-body-part. The data part is taken from the canonical data from
the input component. The parameters use a variety of attributes from the source for items
like the filename, as for ppmixer:genericmime. These value can be overridden by filter
parameters.

application-reference
sets the application reference object identifier. The value should be in numeric OID
format.

single-asn1-type
If present, then the external for the data uses the single-asn1-type CHOICE for the
data external. Otherwise the octet-aligned choice is used.

no-message-reference
If set, no message reference is set in the parameter, even if the source makes a value
available.

Content Conversion

80M-Switch Advanced Administration Guide



ppmhs:ia5-text

This generates an ia5-text body part from the input canonical text data (in UTF-8). If has
the parameter AllowInvalidCharacters, which if it has the value true allows non-ASCII
characters in the body. If this is not set, then non-ASCII characters are converted to ‘?’.

ppmhs:teletex

This generates a teletex body part from the input canonical text data. Characters which
cannot be represented in one of the character sets allowed in TeletexStrings are converted
to ‘?’. There is one parameter, PageBreakAtStart, which if set to true, will cause a
page break (CR FF) to be inserted at the start of the body.

ppmhs:bilateral

Takes the canonical data, and from it generates a bilaterally-defined body part. This filter
has no parameters.

ppmhs:heading-modify

R15.0 and later] Modifies an IPM heading. The parameter notifications alters the notification
requests in all recipient specifiers. takes a value which is a comma separated list from:

none
remove all notification requests.

nrn
add Non-Receipt Notification requests.

rn
add Receipt Notification requests (implies nrn)

ipm-return
add IPM Return request

ppmhs:p772-heading-upgrade

[R15.0 and later] Upgrades an IPM heading for use in a P772 (Military) message.

IPM identifiers are modified to make them conform to the requirements of STANAG 4406.

The primary-precedence heading extension is added to the heading. The value of the
precedence is derived from the envelope priority of the message and any military-messaging
priority qualifier present.

If the heading has copy recipients and/or blind-copy recipients, then the copy-precedence
extension is added to the heading, using the same value as the primary-precedence.

The extended-authorization-info extension is added. The date/time used for it is
message's submission time taken from the trace information in the envelope.

6.2.3.3 MIXER filters

MIXER filter are used when converting between Internet and X.400 content types.

ppmixer:envelope

Used to put heading fields derived from the X.400 message envelope into an Internet
message content. It takes the parameter make822. If this is present, then the standard,
required, RFC fields are generated from the message envelope. This option is used when
the X.400 content is being wrapped in a single MIME body, and so there is no X.400
heading to be used for these fields.

ppmixer:ipms2rfc

Content Conversion

81M-Switch Advanced Administration Guide



Converts an IPM heading to an Internet message heading. It has parameters:

external
Sets the domain for address normalization

internal
Sets the domain for address normalization

show-notif-req
Add comments to recipient addresses to display the notification requests in the IPM
heading

charsets
Specify the character sets which can be used with MIME encoded words (RFC 2047)
when converting teletex strings in the subject or free form names.

fold
Specify the line length at which folding will be performed.

convert-notif-req
[R15.0 and later] Generate a Disposition-Notification-To field in the output. If the
value is @force@ , then the field is always generated; if the value is @upgrade-nrn@,
then if any recipient specifier contains at least an NRN request, then it is generated.
Otherwise it is generated if any recipient specifier contains an RN request.

ppmixer:rfc2ipms

Converts an Internet message heading into a IPM heading. It has parameters:

external
Sets the domain for address normalization

internal
Sets the domain for address normalization

use-mixer-ddas
If set, put into the user element of the this-IPM IPM Identifier RFC heading fields
defined by the PP variable mixer_fields.

make-p772
Ensures that those P772 heading extensions which are required according to STANAG
4406 are present, if not present as a result of mapping MMHS heading fields. Values
are taken from the message's envelope.

notifications
[R15.0 and later] Control the notification requests generated if there is a suitable
Disposition-Notification-To field in the source heading. The value is a comma
separated list selected from @nrn@,@rn@,@ipm-return@. Note that rn implies
@@nrn@. The default is all requests. If the values include @force@, then the notification
requests are added even if there is no Disposition-Notification-To field in the
source heading.

ppmixer:multipart2ipms

Converts a MIME multipart into a forwarded message body. If the parameter p2only is
present, then only elements appropriate for IPMS 1984 (P2) are generated.

ppmixer:genericmime

Generates a standard MIME body from the source canonical data. It can take a number of
parameters to define the attributes of the MIME body. Note that as the data can be arbitrary,
the content-transfer-encoding is set to binary. Unless binary MIME content is being
output, this filter should be followed by ppmime:encode.

Parameters:

Content Conversion

82M-Switch Advanced Administration Guide



Type
Sets the MIME type

Subtype
Sets the MIME subtype

parameters
Has a value which is a space separated list of parameter names, which are added to
the Content-type field of the MIME header.

paramname
Gives the value for one of the parameters whose names are listed in parameters.

Disposition
Gives the disposition value for the Content-disposition field. If omitted, and other such
fields are included, then defaults to attachment.

filename,size,creation-date,modification-date,read-date
Attachment file values for Content-disposition.

Description
Value for Content-description field

Id
Value for Content-ID field

norfc2231
If set, then RFC 2231 encoding is not used for a filename parameter; MIME
encoded-words are used for non-ASCII characters, and the value is not wrapped. If
the value is an integer, then this value gives the maximum length of the parameter
value. The default value is 600. This is to support interworking with Exchange 2003.

If these parameters are not set, the values can be obtained from the source component. For
instance, Description and the file values can be available from a file-transfer-body-part.

ppmixer:tox400bp

Generates the application/x400-bp MIME body which is used to encapsulate an arbitrary
X.400 body part

ppmixer:fromx400bp

Generates the X.400 body which is found in an application/x400-bp MIME body.

ppmixer:ftbp2mime

Extracts data and parameters from a file-transfer-body-part. These are presented in a form
suitable for ppmixer:genericmime. It takes no parameters.

ppmixer:mime2ftbp

Generates a file-transfer-body-part from MIME data, and generates the body part parameters
from the MIME body header fields.

ppmixer:fromharpoon

Generates a MIME body from an X.400 body which is a ‘HARPOON’ encoding of a MIME
body (the encoded MIME body within an ia5-text X.400 body-part).

ppmixer:toharpoon

Encapsulates an arbitrary MIME body within an X.400 ia5-text body (‘HARPOON’
encoding).

Content Conversion

83M-Switch Advanced Administration Guide



6.2.3.4 Textual Security Label Filters

These filters work in conjunction with the security policies to extract and insert filters in
components of the message. Note that the filters are invoked when the corresponding
component is processed. So, you cannot insert a label in a component which is extracted
from another component processed after this component.

Common insertion filter parameters

The insertion filters have a number of common parameters:

security-policy
The name of the security policy to be used. If not specified, then default is used.

verify-label
Verify the label using the policy. If this fails, and the policy has a default label, then
the default is substituted.

convert-label
Convert a label in a different policy to a label in the policy. If this fails, and the policy
has a default label, then the default is substituted.

variant
Specify conversion of the label to the named variant within the given policy.

need-policy-id
If set and the label has no policy ID, then the default policy ID from the security policy
is added to the label.

pplablib:labelinsert

Insert a text label into an Internet message heading. There are these parameters:

xheader-format
Inserts a heading field containing security label information. The value of the parameter
is a format for the whole field, including the field name.

subject-format
Inserts a text label into the existing subject of the message. The value of the format is
the whole of the field, including the field name. The data from the original subject can
be included within the formatted field.

history-fieldname
Insert heading using the given fieldname with text for the original governing label for
the message. This is only inserted if the label has changed. It is only used in conjunction
with xheader-format.

In addition, the filter takes standard parameters for label insertion.

The format can contain format specifiers which are used to include text values within the
output string. The label values are normally from the markup information from the security
policy. The specifiers are:

%b
Generate the whole label as the base64 encoding of the BER encoding of the label

%d
The data from the original subject (for the subject-format only)

%e
Generate the value of an SIO-Label field using ESS label format for the binary part
%c

%x
Generate the value of an SIO-Label field using X.411 label format for the binary part

%l
A text representation of the whole label

Content Conversion

84M-Switch Advanced Administration Guide



%c
A text representation of the label's classification

%p
The privacy mark from the label

%i
The policy ID from the label

%g
The security categories from the label

%%
A percent sign

The text is generated from the security policy configured for the filter, if any is available.
If there is no policy, some best effort is made to generate text.

The label field specifiers can be modified with characters between the ‘%’ and the final
character. The modifiers control where the text comes from, and for the case in getting the
text from the security policy in force, which markup location is to be used.

#
Use raw text rather than policy information

$
Use the API rather than policy information (Not Yet Implemented)

<
Use the document start location

>
Use the document end location

-
Use the page top location

+
Use the page bottom location (the default)

Note: < and > must be escaped when placed in XML as they are ‘special’. Use the entities
&lt; and &gt;

There are ‘\’ escapes which can be used:

\n
adds a newline

\t
adds a tab

\\
adds a backlash

newlines and tabs in the format value itself are ignored.

pplablib:labelextract

Extracts a label from an Internet message heading, and makes it available, for example,
for the X.400 envelope or inclusion as an ESS label in an S/MIME signed message.
Parameters:

regexp
A regular expression. Most Perl regular expression constructs are supported. Named
fields are not supported.

replace
The replacement text. This can use $<n> items to refer to the matched string or
substrings of the input.

Content Conversion

85M-Switch Advanced Administration Guide



field
The name of a heading field. The whole of the field value is used to determine the
label.

base64
Read the base64 encoded BER encoded X.411 label.

attempt-base64
First attempt to read the field as for base64, if that fails the string is checked as a normal
text label.

catalog-lookup
Use the value of the field to find a label in a label catalog. The associated
security-policy must have a label-catalog attribute.

security-policy
The name of the security policy to be used. If not specified, then default is used.

priority
Specifies the priority to be used for the label found. This can be used to override the
“first label found applies” rule which applies by default.

One of base64, field or both of regexp and replace should be specified. base64
does not need a security policy, but the others do.

The combination of the regular expression and the replacement text functions as the
s/<re>/<replace>/ operator in Perl, or the regsub operator in Tcl.

The conversion of text to a security label is a two-stage process. If the field as a whole
matches the regexp, or the field name matches the value of field, the either the replacement
text or the field value, respectively, is passed to the security policy for conversion to a
label. If this fails, but a policy ID and classification can be determined, and the security
policy has an associated label catalogue, then a fallback label can be found in this.

Example of label extraction

[Note: this describes R15.2v1 and later]

This example is in the context of MIXER conversion of a message. It looks for suitable
labels in:

• within the subject field

• a base64 encoded label in a X-X411 field

• within a textual X-header field

Different priorities are applied to these, so the order in the heading is not important.

The converter for the Internet message heading becomes

     <convert type="header" action="convert" cost="2">
       <filter command="pplablib:labelextract">
         <param name="regexp">
      (?i)(^subject:.*\[Classification:([^]]*)\])
         </param>
         <param name="replace">$2</param>
         <param name="security-policy">uk-only</param>
         <param name="priority">3</param>
       </filter>
       <filter command="pplablib:labelextract">
         <param name="base64">X-X411</param>
         <param name="priority">5</param>
       </filter>
       <filter command="pplablib:labelextract">
         <param name="field">X-classification</param>

Content Conversion

86M-Switch Advanced Administration Guide



         <param name="security-policy">uk-only</param>
         <param name="priority">4</param>
       </filter>
       <filter command="ppmixer:rfc2ipms">
         <param name="notifications">rn</param>
         <param name="use-mixer-ddas"/>
       </filter>
     </convert>

The first filter extracts textual labels from the subject, from an string like

Subject: This is an important message [Classification: TOP SECRET]

The second filter extracts the base64 label. The third extracts a text label from a field like:

X-Classification: Restricted

These have to process the heading before it is converted to an IPMS heading by the MIXER
filter.

pplablib:flotinsert

Insert a "first line of text" (FLOT) label into the data of a text body. This filter will only
do this the first time it is invoked for a message. Parameters:

format
Expanded the first line of text. The format uses the same mechanism as
pplablib:labelinsert.

dont-duplicate
If the line generated from the format matches the existing first line, then the extra line
is not added. The comparison ignores case, initial and final white space, and internal
white space is treated as a single space.

history-prefix
Insert a second line of text comprised of the prefix and text for the original governing
label. This is only generated if the label has changed.In addition, the filter takes standard
parameters for label insertion.

For a message, only the first use of this filter will attempt to add a FLOT.

Example of FLOT insertion

The comparison for the first line works with UTF-8, so filters are used to convert character
data to UTF-8, and then the data is re-encoded.

     <convert type="body" action="convert" cost="6">
       <match name="Type">text</match>
       <match name="Subtype">plain</match>
       <filter command="pplablib:flotinsert">
         <param name="format">Classification: %l</param>
         <param name="security-policy">uk-only</param>
         <param name="convert-label"/>
         <param name="dont-duplicate"/>
       </filter>
       <filter command="ppmime:encode">
         <param name="Encoding">quoted-printable</param>
       </filter>
     </convert>

pplablib:flotextract

Content Conversion

87M-Switch Advanced Administration Guide



Extract a FLOT label from the data of a text body. Parameters:

regexp
A regular expression. Most Perl regular expression constructs are supported. Named
fields are not supported.

replace
The replacement text. This can use $<n> items to refer to the matched string or
substrings of the input.

prefix
Prefix to the text to be used for recognition.

suffix
Suffix to the text to be used for recognition.

lines
The number of lines at the start of the body which are checked for a label (i.e. matching
the regexp or the prefix and suffix). The default value is one, i.e. only the first line is
checked.

security-policy
The name of the security policy to be used. If not specified, then default is used.

priority
Specifies the priority to be used for the label found. This can be used to override the
“first label found applies” rule which applies by default.

Either regexp and replace should be specified, or one or both of prefix and suffix.
The regular expression mechanism works in the same way as labelextract. Using
prefix and suffix, any white space at the start and end of the line is ignored. Then, if
the line starts with the prefix and ends with the suffix (treated as zero-length strings if not
configured), then the text between them is used for finding the label. The prefix and suffix
are matched without regard to case.

The conversion of the text to the label functions in the same way as labelextract.

Examples of FLOT extraction

The context here is for SMTP to SMTP messages. text/plain body parts are inspected. The
filter passes the canonical data, with the transfer encoding removed, so it needs re-encoding.
The converter using for them is as follows:

     <convert type="body" action="convert" cost="6">
       <match name="Type">text</match>
       <match name="Subtype">plain</match>
       <filter command="pplablib:flotextract">
         <param name="regexp">
            Classification: (.*)
         </param>
         <param name="replace">$1</param>       
       </filter>
       <filter command="ppmime:encode">
         <param name="Encoding">quoted-printable</param>
       </filter>
     </convert>

This converter does the same, using a prefix:

     <convert type="body" action="convert" cost="6">
       <match name="Type">text</match>
       <match name="Subtype">plain</match>
       <filter command="pplablib:flotextract">
         <param name="prefix">classification:</param>
       </filter>

Content Conversion

88M-Switch Advanced Administration Guide



       <filter command="ppmime:encode">
         <param name="Encoding">quoted-printable</param>
       </filter>
     </convert>

pplablib:envinsert

This filter inserts the current message label in the message envelope, for the recipients of
the message which is being converted. This is used when some check or change to the label
is required. For instance, if label conversion is to be performed.

It takes just the common label insertion filter parameters.

pplablib:conflictfield

This filter adds a heading field to an SMTP heading to record information on label conflicts
found in the message. It has one mandatory parameter, fieldname, which sets the name
of the field to insert.

6.3 MIXER Content Conversion

6.3.1 Internet to X.400

This conversion basically follows RFC 2156 and RFC 2157, with some additional features:

• Standard messages are converted to X.420 IPMs (Inter-Personal Message).

• DSNs (Delivery Service Notifications) are converted to X.400 Reports if possible [from
R15.0].

• MDNs (Message Disposition Notifications) are converted to X.420 IPNs (Inter-Personal
Notification) [from R15.0].

6.3.2 X.400 to Internet

• IPMs are converted to messages

• IPNs are converted to MDNs [from R15.0]

• Reports are converted to DSNs.

MDNs and DSNs carry a text body-part intended to be read by the message originator. The
text body which is generated by M-Switch can be configured.

6.3.3 Correlation

A sender of an X.400 message may wish to correlate received Reports and IPNs with their
sent messages. A sender of an Internet message may wish to correlate received DSNs and
MDNs with their sent messages.

M-Switch supports the standard means for such message correlation across the MIXER
gateway:

• The MTS Identifier for correlating X.400 Reports with messages.

• The IPM Identifier for correlating X.400 IPNs with messages.

• The SMTP ENVID extension, used to correlate DSNs with messages.

Content Conversion

89M-Switch Advanced Administration Guide



• The Internet Message-ID field, used to correlate MDNs with messages.

The MIXER specification converts these to fields in the other type of message such that
the item (Report, IPN, DSN, MDN) which is returned, when converted will carry the
correlating value in the correct place for the item.

However, there are some issues with this.

• Internet Message-IDs can be too long to be carried in the user-relative-identifier of an
IPM Identifier.

• Some Internet message senders do not use ENVID.

• Some message correlation software does not use the standard fields in DSNs or MDNs
for the correlation.

• To allow for this, M-Switch has some additional features to aid such correlation.

6.3.4 Specifying Internet Heading Fields to be transmitted

If an Internet message has an ENVID, then it is assumed that the sender uses this for
correlation. This is encoded in the X.400 message’s content-correlator.

If there is no ENVID, then some of the Internet message’s heading fields can be included
in the content-correlator. This should be returned in the report, and the Report to DSN
conversion can use the enclosed information.

It is possible to specify the fields to be copied. There is a PP variable (configured via the
Advanced tab) called mixer_fields. If set, its value is a spaced-separated list of field
names to be used. If it is wanted to truncate the field value, then follow the field name with
the maximum length in parentheses. This is an example as it will appear in the
mtatailor.tai file:

set mixer_fields="Thread-index Message-ID Subject(20)"

If this is not specified, a default list is used, corresponding to:

set mixer_fields="Subject Message-ID Date"

Note that the content-correlator has a maximum length of 512 characters, and the encoding
includes the field names. The field names match ignoring the case of the letters. The fields
are copied in order until the content-correlator is filled.

On receipt of a Report containing a returned content-correlator which contains such encoded
fields, M-Switch will use this information. It will make it available to the text body
generation. If the information contains a Message-ID field, then the value of this is used
to add an In-Reply-To field to the outer DSN heading. If the information contains a
Thread-Index field, then from its value a child thread-index value is generated and used
as in a Thread-Index field in the outer DSN heading.

6.3.5 Specifying fields for MDN correlation

When an Internet message is converted to a IPM, the Message-ID is used to generate the
IPM Identifier. This is returned as the subject-ipm field in an IPN, and converted back to
Internet form, used for the Original-Message-ID field in the MDN generated from the
IPN. To work round the problem of long message-ids, and also to provide other information
used in MDN generation, it is possible to store Internet message heading fields in the IPM
Identifier. This storage uses DDAs within the user address part of the IPM Identifier.

Content Conversion

90M-Switch Advanced Administration Guide



The same PP variable is used to configure which fields are included. Note that as the
information uses a restricted character set, the total amount of information that can be
conveyed is somewhat less than in the content-correlator.

When an IPN is converted into an MDN, the subject-ipm IPM identifier is checked for this
information. It is used in the same way as for DSN generation for the text body and outer
MDN heading, with the additional use of a message-id from this information overriding
any original-message-id value derived from the user-relative-identifier of the subject-ipm.

This use of DDAs is not automatic, it should be configured in the converter which converts
the outer Internet heading into the IPM heading. This is done using the parameter
use-mixer-ddas to the ppmixer:rfc2ipms filter, e.g.

      <filter command="ppmixer:rfc2ipms">
        <param name="use-mixer-ddas"/>
      </filter>

6.4 MIXER Address Conversion

The conversion between X.400 OR-addresses and Internet e-mail addresses is normally
performed in accordance with the procedures defined in RFC 2156. These are based on
finding the longest match in the mapping information, and then applying an algorithm to
the unmatched part of the address. The mapping information can be held in the Directory,
in address mapping trees, or in tables (the or2rfc and rfc2or tables).

There are some enhancements to the standard procedures:

• The string format used supports the universal string addressing attributes.

• The character used as the separator for the mapped personal name can be changed.

• Conversion to and from the mapped personal name form can be suppressed.

• The string representation of the OR-address in the internet address can have spaces
replaced by a non-space character.

• The mapping can be configured to search for individual address conversions.

6.4.1 Individual Address Mapping

This uses LASER-like searching in order to find an entry which contains the address which
needs to be converted, and an attribute within that entry gives the address resulting from
the conversion.

6.4.1.1 Configuring per-user mapping

The configuration of which addresses are configured for the per-user conversion uses the
same information that is used for the standard address mappings.

For Directory-based information, for a node in an address conversion tree, there is a choice
of setting the Directory profile to be used. This choice actually sets the name of the LASER
table to be used, although the term “Directory profile” is used throughout MConsole. A
default Directory profile is always set up. Any other name is used as the table name prefix,
and the table called prefix-laser. This can be applied to the tree at the root for an address
type, which means that the lookup will apply to all addresses of that type.

For table-based information, the table entry has a value which the string for the LASER
table, as in the directory based information.

Content Conversion

91M-Switch Advanced Administration Guide



6.4.1.2 Configuring LASER tables for per-user address mapping

The table configures LASER lookup in the same way that is used for LASER routing
M-Switch Administration Guide). If there is a conflict between the use for routing and
address mapping, then use two LASER tables, distinguished by using a different prefix.
The lookup uses the same basic LDAP configuration values as routing.

There are additional table entries to control the address mapping lookup:

mixer-internet-atts
Defines the attributes used to construct the search filter when looking up an Internet
address.

mixer-x400-atts
Defines the atttributes used to construct the search filter when looking up an X.400
address.

mixer-filter-internet
Defines an LDAP search filter which is combined with the constructed filter using an
‘AND’ when looking up an Internet address.

mixer-filter-x400
Defines an LDAP search filter which is combined with the constructed filter using an
‘AND’ when looking up an X.400 address.

The filters are used to qualify the filter constructed from the attributes and the address
being looked up.

The table entry laser-atts is used to specify the attributes to be read from the entry.
Note that this entry is used for all lookup types using this LASER table. The use of each
attribute specified in laser-atts needs to be configured using a table entry with a key
which is the attribute type. The value of the entry specifies the use of the attribute type.
This can be one word or two words separated by a space. Using two words enables the
same attribute type to be used for routing and for address mapping.

There are two attribute meanings for the per-user address mapping:

mixer-internet
The attribute holds the Internet version of the user’s address.

mixer-x400
The attribute holds the X.400 version of the user’s address.

If the table entries are not present, then there are some defaults, equivalent to:

mixer-internet-atts: mail
mixer-x400-atts: mhsORAddresses
mail: mixer-internet
mhsORAddresses: mixer-x400

Note that if you specify laser-atts, you must explicitly list all attributes which are to
be looked up for routing and address mapping. And you must have explicit table entries
for each attribute specified in laser-atts.

Content Conversion

92M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#LASER_01
../swadm/SWADM.pdf#LASER_01


Chapter 7 M-Switch ACP 127 Operating Signals
This Chapter describes M-Switch handling of ACP 127 Operating Signals (OPSIGs).

7.1 M-Switch Architecture and Service
Message Support

M-Switch provides ACP 127 support as an ACP 127 gateway, converting protocol to
STANAG 4406 or SMTP. It is intended to work as a fully automatic system wherever
possible. Signals are often included in ACP 127 messages for automatic control purposes,
including automatically generated service messages. Messages will be generated by protocol
conversion or ACP 127 relay.

MConsole, the management UI for M-Switch provides the circuit operator with a UI for
generating a service message and sending it on the selected circuit. This enables an operator
to generate any service message. A drop down list of commonly used operating signals is
provided, but any signal may be entered. This allows any operating signal to be sent, and
so any signal can be sent manually.

Figure 7.1. MConsole ACP127 View Manual Send.

On an actively monitored ACP 127 circuit, the operator may well observe incoming service
messages on the activity trace UI. Service messages directed to the local RI, apart from
those handled automatically, are converted to SMTP or STANAG 4406, in a manner that
does not lose information. This enables an operator to view service messages in a standard
mailbox and to handle any signal manually.

7.2 Operating Signals

The following table considers each OPSIG handled by M-Switch. Note that OPSIGs are
handled in three ways.

M-Switch ACP 127 Operating Signals

93M-Switch Advanced Administration Guide



1. Using the OPSIG directly in a service message. This happens where the OPSIG conveys
information or provides an answer.

2. Using INT OPSIG in a service message. This is a question, to which an answer is
expected.

3. Use of the OPSIG in a non-service message. The descriptions here refer to service
messages, except were explicitly noted otherwise. Where the INT variant is used, this
is explicitly noted

The descriptions here refer to service messages, except where explicitly noted otherwise.
Where the INT variant is used, this is explicitly noted.

Table 7.1. OPSIG: QRT

NotesReceptionGenerationDescriptionSignal

The message has a three
letter channel

On receiving QRT, a
sending system will

For a receiving system, the OPSIG
sending UI the QRT sending

Shall I stop sending? /
Stop Sending

QRT

designator to identifyautomatically disable
outbound transmission.

drop-down notes that this will request
peer disable. There is also UI to that circuit that should

be closed or open.disable the peer from sending which
will generate a QRT.

Table 7.2. OPSIG: QRV

NotesReceptionGenerationDescriptionSignal

ManualFor a receiving system, the OPSIG
sending UI the QRV sending

Are you ready/ I am
ready

QRT

drop-down notes that this will request
peer enable. There is also UI to
enable the peer from sending which
will generate a QRV.

Table 7.3. OPSIG: ZFX

NotesReceptionGenerationDescriptionSignal

Used for broadcastNode receiving
messages will identify

Report that channel number is open.
Receiver of ZFX may retransmit

Channel Number is
Open

ZFX

missing message andindicated message This is a report
send service messagethat a number in the channel number
with ZFX.. Nodesequence has not been seen. (ACP127
receiving ZFX willpara 433). It is appropriate on a
retransmits requested
message if configured.

sequenced channel between two
stations. If a broadcast receiver is
missing a channel number, then it
does not know if the message is for
it or for other stations. M-Switch can
configure use of ZFX in broadcast
receiver as alternative to ZDK (ZDK
recommended)

Table 7.4. OPSIG: ZDK

NotesReceptionGenerationDescriptionSignal

Recommended for use
in broadcast

Retransmits requested
message Then the

Requests retransmission Message
receiver will use INT ZDK as a

Will you repeat
message

ZDK

message which is resentrequest for sending again message
identified by channel number. has ZDK <channel

number> in FL4. This
is the default for
broadcast in M-Switch.

M-Switch ACP 127 Operating Signals

94M-Switch Advanced Administration Guide



NotesReceptionGenerationDescriptionSignal

The broadcast message
listings also include it
in the details of the
message, so that a
station to which the
message is addressed
which has seen the
original but not the
repeat need not request
the resending of the
repeat.

Table 7.5. OPSIG: ZFQ

NotesReceptionGenerationDescriptionSignal

No sensible automatic
action on reception

ManualOptionally generated (configuration
choice)

Duplicate DetectedZFQ

Table 7.6. OPSIG: ZFG

NotesReceptionGenerationDescriptionSignal

Anticipated use is
specialized Italian

Service message sent to
operator

Optionally used on broadcast to warn
of duplicates (configuration choice –
default is to discard duplicates)

This message is an
exact duplicate of a
message previously

ZFG

situation (OTC). It
transmitted and is to be appears in FL1 and is
delivered to all used rather than using
appropriate addressees ZDK to indicate the
served by the receiving message of which this

is an exact repeat.communications
facility.

Table 7.7. OPSIG: ZFT

NotesReceptionGenerationDescriptionSignal

No sensible automatic
action on reception

Service message sent to
operator

Optionally generated when message
has no sequence number
(configuration choice)

Message...received
without channel
number(s) (or station

ZFT

serial number)
following message
bearing channel number
(or station serial
number) ...Message
released.

Table 7.8. OPSIG: ZES1/ZES2

NotesReceptionGenerationDescriptionSignal

ZES signal will always
be initiated manually

When receiving a
ZES2 with a channel

ManualYour message...has
been received...

1. Incomplete;

ZES1/ZES2

in response to operator
detected partial failure

number, M-Switch will
be extended to

2. Garbled.
(complete failures will
not be detectable). This

automatically
retransmit the

Request
retransmission.

is supported in
MConsole with drop
down. On many

requested message.
The retransmission
will have ZFG +

circuits where garble ischannel number in the
possible, channelmessage instructions

M-Switch ACP 127 Operating Signals

95M-Switch Advanced Administration Guide



NotesReceptionGenerationDescriptionSignal

and be transmitted with
a new channel number

numbering is not used,
so automatic handing

Other situations
handled manually

on reception is not
possible.

Table 7.9. OPSIG: ZNO

NotesReceptionGenerationDescriptionSignal

No sensible automatic
handling

ManualManualUnable to decrypt
message...

ZNO

Table 7.10. OPSIG: ZUI

NotesReceptionGenerationDescriptionSignal

No sensible automatic
handling

ManualManualYour attention is invited
to...

ZUI

Table 7.11. OPSIG: ZBZ

NotesReceptionGenerationDescriptionSignal

ZBZ is generally used
on circuits where

Manual by default
Provides an option on

Manual MConsole OPSIG UI
includes INT ZBZ (request message

What is the printing
acceptability of my
signals (or those of...)?

The printing
acceptability of your

ZBZ

message garble is
possible. Generation of
ZBZ needs an operator
to assess which value is

receive circuit (for use
only on reliable
circuits) to
automatically send

printing quality) to make this easy to
select.

signals (or those of...)
is...

needed. ZBZ is also
used on reliable

ZBZ5 when the
message is identified

1. Unacceptable -
totally corrupt;

channels (TCP, land
line, COSS) to check
message receipt.

(i.e., on a circuit with
channel numbers).

2. Unacceptable - very
corrupt;

Initiation (INT ZBZ)
will always be operator
driven. For a reliable

3. Unacceptable - partly
corrupt;

link, ZBZ5 can be
automatically
generated.

4. Acceptable -
occasionally corrupt;

5. Acceptable - no
corruption.

Table 7.12. OPSIG: ZAN

NotesReceptionGenerationDescriptionSignal

Automatic Precedence
Control following

Generated at operator request in
MConsole precedence management
UI

Transmit only messages
of and above
precedence...

ZAN

signal Local operator
alerted. Local operator
requests take priority
over ZAN

M-Switch ACP 127 Operating Signals

96M-Switch Advanced Administration Guide



Table 7.13. OPSIG: ZIC

NotesReceptionGenerationDescriptionSignal

DiscardSent in response to a ZID

See ACP 127(G) para 412 for
ZIC/ZID

What is (are) station
serial number(s) or
channel number(s) of
last message(s) you

ZIC

transmitted to me (or
to...)?

Table 7.14. OPSIG: ZID

NotesReceptionGenerationDescriptionSignal

Generate a ZICAutomatic generation (optional) at
configurable time after no traffic has
been received

What is (are) station
serial number(s) or
channel number(s) of

ZID

last message(s) received
from me (or from...)?

Table 7.15. OPSIG: CHANNEL CHECK

NotesReceptionGenerationDescriptionSignal

412e defines a special
CHANNEL CHECK

On peer receipt of
CHANNEL CHECK

MConsole provides a 412e compliant
test message (this is not a OPSIG) to

Manual channel
Check

See ACP127G para
412e/f

CHANNEL
CHECK

message. Note that
CHANNEL check is
a special message and

message, this will be
routed back to the
sender.

make it straightforward for an
MConsole operator to send a correct
CHANNEL CHECK message. On

is not a servicereceipt of the returned message, it
message. It iswill be delivered to the address

associated with the local operator. addressed to the local
address and sent over
the link so that it is
echoed back.

Table 7.16. OPSIG: CHANNEL CONTINUITY

NotesReceptionGenerationDescriptionSignal

ZIC/ZID will usually
be configured to be

Automatic or ManualAutomatic or ManualProcess described in
ACP127G para 412

This uses ZIC/ZID

CHANNEL
CONTINUITY

automatic. ZIC/ZID
can also be used
manually with
MConsole

Table 7.17. OPSIG: R Z

NotesReceptionGenerationDescriptionSignal

This is a prosign, not an
operating signal

Cease sending repeats
of messages

Automatically generated on FLASH
message (configuration choice to do
this). Follows ACP127G point 151 b

Flash AckR Z

Table 7.18. OPSIG: INT R Z

NotesReceptionGenerationDescriptionSignal

ManualManualCannot find any
information on this

INT R Z

M-Switch ACP 127 Operating Signals

97M-Switch Advanced Administration Guide



Table 7.19. OPSIG: OSL

NotesReceptionGenerationDescriptionSignal

Automatic handling
does not seem
appropriate

ManualManualCan you acknowledge
receipt?

OSL

Table 7.20. OPSIG: ZAH

NotesReceptionGenerationDescriptionSignal

Automatic handling
does not seem
appropriate

ManualManualUnable to relay
message...in present
form

1. Not in prescribed
format;

ZAH

2. Format
lines...incorrect;

3. No on-line facility
available;

4. Call signs not
encrypted;

5. Text not encrypted).
We file. Transmit

correctly prepared
message to all
addressees (or to...).

M-Switch ACP 127 Operating Signals

98M-Switch Advanced Administration Guide



Chapter 8 Security
M-Switch has a rich set of Security features. This chapter describes the different features,
what they do and how they are configured.

8.1 Overview

M-Switch has a number of features relating to security:

• Authorization can control the delivery of messages by blocking messages. This is done
through Authorization Rules. The rules can include the results of checking the S/MIME
signatures on messages, and for labelled messages, a security policy can be applied with
the clearance of the recipient, peer MTA or channel.

• Internet messages can be signed by the MTA using S/MIME signing.

• X.400 messages can be signed by the MTA in accordance with STANAG 4406 ed 2.

• Internet messages can be signed using DKIM (DomainKeys Identified Mail, RFC 4871).

• Internet and X.400 messages can be encrypted and decrypted using S/MIME
encapsulation.

• There are various ways in which security labels are processed by M-Switch.

Signing and encryption can include messages being converted in a MIXER gateway. These
are performed as a part of content conversion.

A useful set of examples of signing and encryption configuration are provided in the
signing/encryption examples.

A useful set of examples of label extraction, verification and insertion configuration are
provided here: label extraction, verification and insertion examples.

8.2 Security Labels

8.2.1 Background

Security labels are generically a means for identifying the sensitivity of information and
therefore restricting its distribution. Labels used for computer based information are often
based on those defined in X.411 and ESS labels defined in RFC 2634. These have the
following components (and so are often described as “structured labels”):

• Policy ID. This is an object identifier, which identifies the authority which defines labels
with this ID. In some cases, the ID represents the ownership of the information.

• Classification. This is an integer value, which gives the basic secrecy level. However,
higher numerical values are not necessarily more secret.

• Categories. These are optional, and if included qualify the classification. Each value is
a pair of an object identifier and a value whose type is associated with object identifier.
The valid IDs and values are specified by the authority.

• Privacy Mark. This is a text string. It is not often used.

Security

99M-Switch Advanced Administration Guide



Associated with security labels are other data items. A Security Policy Information File
(SPIF) is structured data which defines for a given policy ID the valid classifications and
security categories. It also can define strings to be associated with labels, which are used
for mark-up of data for human reading. It can define equivalent policies, which enables
labels defined by a different authority to be associated with labels defined in this SPIF. It
also defines how the ‘Access Control Decision Function′ (ACDF) is to be applied.

A Clearance is a data object very similar to a label, except that the classification is replaced
with a set of classifications. Clearance values are assigned to people and other entities
which may access labelled information. The ACDF takes a label and a clearance and
establishes whether access should be granted.

Sometimes information is labelled using a text string. This string will often be derived
from the mark-up strings for the label and its components. When the string is at the start
of a body of text, it can be known as a "First Line of Text" (FLOT).

For messages, labels may be found:

• In the envelope of X.400 messages

• An ESS label within signature information for an S/MIME (Cryptographic Message
Syntax) message.

• A structured message format within an Internet message heading field

• Text in an Internet message heading field, sometimes known as an X-header.

• A FLOT

8.2.2 M-Switch Label Handling

M-Switch can:

• Extract labels from the message envelope and content

• Insert labels into the message envelope and content in various forms

• Use labels in authorization in conjunction with a SPIF and clearance associated with a
channel, peer MTA or user.

8.2.2.1 Label extraction

Label extraction can be done when the message is scanned on arrival and by the shaper
channel when performing content conversion.

X.411 envelope labels are always found, no configuration is required for this. For message
content scanning on arrival and in the shaper channel, ESS labels in S/MIME signed
messages are always extracted, as are the labels in SIO-Label heading fields. To extract
other kinds of label requires explicit configuration of specific shaper filters for this purpose.
In the shaper channel, the latter mechanism will extract the labels as the content's
components are processed for conversion. Note that this means some of the content's
components may already have been processed when the label is found.

By default, “the” label for the message is taken to be the first label found. On message
arrival, this is label is associated with the message envelope. This label is available for the
shaper channel before any conversion process is performed. It is possible to associate a
priority with a source of labels, which will override the “first used” principle.

The conversion of text labels to a proper structured label requires the use of security policy
information.

8.2.2.2 Label Insertion

When inserting labels it is possible to:

Security

100M-Switch Advanced Administration Guide



• Use a default label if no label is available

• Verify the label against a security policy

• Convert the label using a security policy

• Add a policy ID to the label, if it is missing

If verification or conversion fail, then any default label will be used in place of the failed
label.

When a label is found, it can automatically be used as an X.400 envelope label. In addition,
there is a shaper channel filter which can be used to establish an envelope label (for the
message being converted) when verification or conversion is required.

When a signed message is generated, any label for the message is automatically included
in the signed attributes of the message.

Other label types are inserted through the use of shaper filters. Text labels are generated
using the markup strings from SPIFs in the security policy.

8.2.2.3 Use in Authorization

The label found in the message on arrival can be used for authorization. The security policy
used for this is called "acdf-policy". If this is not defined, then the policy called "default"
is used. If neither is available, then the authorization fails.

8.3 Content Scanning

The content of a message may be scanned when the message arrives in the MTA. This can
be:

• To extract information from an X.400 IPM or IPN for logging in the audit log

• To extract information from an Internet DSN or MDN for logging in the audit log

• To check the signature of a signed message

• To extract labels for use in authorization

If there is no need for any of these, then normally the content is not scanned. If it is desired
to force the scanning, then set the PP variable always-scan-content to the value true.

Configuration

The actions taken on scanning are controlled by an XML configuration file called
submitscanconfig.xml. A default copy is distributed, installed in SHAREDIR/switch. If
modifications are to be made, then this file should be copied to ETCDIR/switch, and the
copy edited. This will avoid changes being lost should the installed software be updated.
However, when upgrading to a new release, check the new installed version for changes.

The configuration changes which you are likely to make relate to:

• Label extraction, involving the configuration of shaper filters

• The configuration of security policies for use in label label extraction and authorization
checking using labels.

Security

101M-Switch Advanced Administration Guide



8.4 S/MIME Channel Configuration

The details are given in the relevant sections. Here is an outline.

8.4.1 Verification

• You should configure the channel for verification. A digital identity is not required, but
trust anchors are required.

• The MIME exploder should be configured to ensure that the S/MIME bodies are
recognized.

• You should decide if the S/MIME bodies should have the signed data extracted, through
the use of suitable converter actions.

• Verification and extraction of X.400 signed messages requires that the content type
oid.1.2.840.113549.1.9.16.1.6 be ‘exploded’. To extract the content within
the signed message, use the ‘extract’ action for the converter for the content.

8.4.2 Signing

• You should configure the channel for signing. A digital identity is required, but other
trust anchors are not required. This configuration is the same for signing S/MIME
messages and for STANAG 4406 ed 2 signing.

• For S/MIME signing of Internet messages, you should decide how to sign, by setting
the sign action on a converter for either a header or content. This converter may require
additional configuration.

• For STANAG 4406 ed 2 signing of X.400 messages, the signing should be done for the
output content type oid.1.2.840.113549.1.9.16.1.6, which identifies content
which is CMS (Cryptographic Message Syntax). This output should have the same
converters as for converting to P772 (oid.1.3.26.0.4406.0.4.1) with the exception
that the converter for the content component should have the action ‘sign’. The converter
takes a parameter input-type which has a value giving the content type for the content
type to be signed. This can be the special value p2orp22.

8.4.3 Encryption/Decryption

• You should configure the channel for encryption and/or decryption. For decryption, a
private key is required, corresponding to the public used by senders of messages to be
decrypted. For encryption, a certificate containing a suitable public key is needed for
each recipient (or peer MTA).

• When generating a triple-wrapped X.400 message, the output content type should be
oid.1.2.840.113549.1.9.16.1.6. If the inner content type is to be P772, the
converters should be suitable, and the ‘input-type’ parameter on the converter should
be oid.1.3.26.0.4406.0.4.1.

8.4.4 Label Extraction/Insertion

If an S/MIME message is verified, and it contains an ESS label, then it is automatically
made available for the X.400 message envelope. If a message is signed, and a label is
available either from the X.400 envelope or from label extraction, then it is included as an
ESS label. If the source label is from a different security policy from the local policy, then
the label is converted to the local policy, as long as the label's policy is an equivalent policy
within the local security policy.

Security

102M-Switch Advanced Administration Guide



Insertion filters can be used to insert text labels into message headings and as first line of
text. Extraction filters can be used to look for text labels and make the label available for
the X.400 envelope or for an ESS label in a message being signed. If using extraction
filters, you will need to configure the channel's in-table.

If a message is being signed and there is no label available from the message, then a default
label can be specified for the shaper channel. This ensures that all signed messages are also
labelled. If a security policy is specified for the channel, then the label must conform to
that policy.

8.5 DKIM Configuration

DKIM signing is performed as part of content conversion. The supplied configuration
already has a basic configuration set up for this. Normally, such signing is only applied to
messages received via certain channels, such as a channel used for authenticated SMTP
submission. The subtype-in for such channels is set to @dkim-sign@. This selects the
converters required for the signing.

8.5.1 Shaper channel configuration

The signing is invoked by applying the ‘sign’ action to the ‘envelope’ component of the
message. The converter used for this will normally have some match selectors to restrict
the messages to which it applies.

8.5.2 DKIM configuration

There are a number of values which can be used to configure the signing. These are either
configured as parameters to the convert within the shaper channel’s XML file, or can be
configured as PP variables. The former take precedence.

dkim_private_key
(Mandatory) The name of the file containing the private key to be used for the signing.
This should be a PEM file containing the RSA key. If the filename is a relative
pathname, then it is relative to $(ETCDIR).

dkim_key_passwd
The password for the private key, if required. This value can be encrypted using the
server password mechanism. If in a PP variable, this happens automatically on creating
the mtatailor.tai file from information in the directory.

dkim_selector
(Mandatory) The selector for the key, which is the name used to construct the DNS
name used to retrieve the key.

dkim_sign_alg
(Mandatory) A string giving the signing algorithm and the hashing algorithm. Only
two values are currently supported: rsa-sha256 and rsa-sha1.

dkim_header_fields
A colon-separated list of header fields to be used for the signing. If not included, a
default set which includes the recommended fields is used.

dkim_signing_domain
The domain deemed to be performing the signing. This is the most significant
(right-hand) part of the DNS name containing the public key. If omitted, the local
domain configured for the MTA (loc_dom_site) is used.

Security

103M-Switch Advanced Administration Guide



Here is an XML fragment for a converter for signing, where the mandatory values are
parameters:

<convert type="envelope" action="sign">
  <param name="dkim_private_key">switch/dkim-private.pem</param>
  <param name="dkim_selector">selector</param>
  <param name="dkim_sign_alg">rsa-sha256</param>
  <match name="Content-subtype">dkim-sign</match>
</convert>

8.5.3 Table-based DKIM configuration

To allow support for multiple signing domains, each with their own DKIM settings, support
for selection of parameters from a table, based on originator addresses, is also available.
This is configured as follows:

A special converter parameter "dkim_signing_table" specifies the name of the table
to be used. This can also be set as a PP variable.

An optional converter parameter (or PP variable) "dkim_address_fields" allows
selection of the address field from the message being signed which is to be used as
the key for table lookup. Any valid header address field can be selected (e.g. "from",
"return-path"), plus the special value "rfc822-originator", which specifies the envelope
originator address (i.e. the argument to the "MAIL FROM:" SMTP command. Multiple
address specifications can be provided, as a colon separated list, with matches being
tried in the order specified - e.g. "from:rfc822-originator" would first try a match on
the From header field, and if that failed would try the envelope originator address. If
no "dkim_address_fields" setting is present, the code falls back to use of
rfc822-originator.

Support for exact address match, address domain and domain suffix matching is
provided. This is performed automatically during table lookup: for example, a lookup
of "tc@isode.com" would first attempt an exact match for "tc@isode.com", then
"isode.com" and finally "com". If any of these lookups succeeds, then any absent
parameters from the matched table entry will be set from the "default" entry (if present).

The table value field allows configuration of all of the existing DKIM parameters, as
detailed below.

A "default" entry which can specify fallback values is supported.

The DKIM table is set up in the same way as existing tables and is handled with existing
infrastructure, so it can be configured as a DIR, LINEAR, DBM or EMPTY.

The value field of a table entry consists of a set of comma-separated key=value pairs,
with keys: K=<signing key file> P=<passphrase for key file if required> S=<DKIM
selector> D=<signing domain> F=<header field list for DKIM algorithm> A=<signing
algorithm>

If a given DKIM parameter is not configured via the table, the code will fall back to
use of values from the Shaper configuration file, and if not set there, PP variables.

The default header field list is hard-coded as a colon-seperated list of the following
fields: From, Sender Reply-To, Subject, Date, Message-ID, To, Cc, MIME-Version,
In-Reply-To, References, Content-Type, Content-Transfer-Encoding, Content-ID,
Content-Description

If the Signing Domain is not specified, it defaults to the value of the PP variable
"loc_dom_mta".

The only supported Signing Algorithms are "rsa-sha1" and "rsa-sha256".

8.5.4 DNS configuration

For systems to verify the signatures, you will need to add a suitable TXT record to your
DNS. The name used is <selector> ._domainkey. <signing-domain>. The contents of

Security

104M-Switch Advanced Administration Guide



the record are described in RFC 4871. How you do this is out of the scope of this
documentation.

8.6 Configuration of Cryptographic Services

M-Switch uses cryptographic services in various contexts:

• Signing messages

• Verification of signed messages

• Encryption and decryption of messages

• TLS in various contexts both as server and client

• Use of Strong Authentication

This section describes the use and configuration of the underlying cryptographic services.
These are used in following:

• the use of mechanisms for the Cryptographic Message Syntax (CMS) in
signing/verification and encryption/decryption

• the use of TLS by the SMTP server and Channel

• the use of TLS by the Corrector Channel

Other areas such as X400p1 strong Auth will move to use this in future releases. Even for
CMS signing and verification, the older configuration data can be used, which is used to
configure the new interface in a limited way.

Note: encryption/decryption is a separately activated feature.

8.6.1 Overview

The underlying library has two main aims. The first is to enable the use of different
underlying cryptographic service providers, in particular:

• OpenSSL

• To hardware which uses the PKCS#11 API

• Microsoft CryptoAPI (CAPI), including access to hardware such as smart cards through
this API

Currently only the OpenSSL backend is available.

The second aim is to have a Security Database which holds configuration items and other
data for use by the cryptographic services. The crypto API can also access data in the
Security database held by underlying cryptographic services. These are:

• Specification of trust anchors (TAs)

• Certificates

• Private keys

• Secret keys

• Configuration for certificate verification

There are two kinds of Security Database: ephemeral and permanent. The ephemeral
database is used when the data and configuration information is held in different forms,
and so the database, which is entirely within memory is loaded with the data when the

Security

105M-Switch Advanced Administration Guide



program starts. The permanent database is a simple, local, SQL database. It can be password
protected, in order to keep sensitive information, such as private keys, encrypted. .

The Security Database can be accessed in one of two ways.

• Crypto API. This is used by the qmgr which directly manages the permanent Security
Database held in filestore local to the running M-Switch.

In addition there is a command-line tool which is used to load and manipulate information
in this database. The use of this command line tool icmanage, is described later in this
chapter.

• The permanent database can also be configured by MConsole over SOM to the qmgr.

The advantage of the permanent database is that it provides long-term storage. One use for
CMS is that a message can carry certificates which are stored for later use in verification
or encryption, or a certificate revocation list, used in the later verification of certificates.

The ephemeral Security Database is used by M-Switch components which can be configured
using (for example) PKCS#12 files to hold certificates. These short lived components read
these files and populate the ephemeral Security Database to use until the component has
completed its work and exits, at which point the ephemeral Security Database disappears.

The long term plan is for all use of the ephemeral Security Database ceases in favour of
using the the permanent Security Database.

8.6.2 Using the Configuration

Generally use of the Security Database should be managed by MConsole and access
transparently by components of M-Switch such as SMTP channels. However there may
be a requirement to access the permanent Security Database using icmanage. This section
describes how to use the icmanage to access the Security Database.

If using a permanent database, the application will specify the file used for the database.
There may be a default filename for the application. Configured trust anchors can be limited
to the context(s) in which they are to be used. It is assumed that the configuration of the
details for certificate verification are common across the application.

When the application needs a private key or permanent secret key, this is referenced by
they key object's URI.

8.6.3 Security Database Details

This section describes how the security database stores its data and how to access the
database.

8.6.3.1 Command Line Tool

There is a command line tool which is used to manage the database. It is invoked using
the command:

icmanage -f <dbfilename> [-p <passphrase>] [-c] [<command>]

The passphrase is given using one of the formats explained below. The -c flag enables the
database to be configured. If a command on the command line is not specified, commands
are read from standard input.

Commands

help <command>
gives help on that command, or a list of commands if <command> is omitted.

Security

106M-Switch Advanced Administration Guide



change <old-passphrase> <new-passphrase>
Change the passphrase for the database. If there is no passphrase, use an empty string.

cert <filename>
Load a certificate or certificates from a file. If the filename ends in ‘.pem’, then the
file should contain one or more certificates in PEM format. Otherwise the file is
assumed to contain a single certificate in DER format.

delete <object>
Remove the object from the database.

pkcs12 <filename> [<passphrase>]
Load a PKCS#12 file. If the file contains a private key and associated certificate they
are created with related URIs, so that the certificate's URI can be used to retrieve the
corresponding private key. Self-signed certificates within the PKCS#12 file are set as
trust-anchors for “any”.

pkcs8 <filename> [<passphrase>]
Load a private key from a file. The file should contain a PKCS#8 format private key,
which contains information on the key type.

private <type> <filename>
Load a private key from a file. The file should contain a binary encoded private key
of the type indicated. Possible types are:

rsa
RSA key

dsa
DSA key

ec
Elliptic Curve key

read <object>
Read configuration data from the internal database. If a partial URI is used then all
matching data items are returned.

search [-f] <searchstring>
Search for certificates. The search string is the query part of a certificate search URI,
the part after the ‘?’. -f gives more information.

When searching certificates, you need to omit the "icrypto cert:?" portion of the
URI, e.g.:

icmanage> search -f valid=20130809161951Z
#1:  icrypto:cert:softkey:1376578855-20129-0 Certificate
subject: cn=dsa,c=gb
issuer:  cn=subca2,c=ca
serial:  04
valid:   20130809161951Z to 20180808161951Z

set <object> [<value>]
Set configuration data, or object attributes. The object ID should be a full URI. If the
value is omitted, then the attribute or item is removed.

show [-f] <object>
Show data for an object. If the object is a certificate, then the corresponding public
key is also displayed. If there is a corresponding private key in the DB then this is also
displayed. -f gives more information.

8.6.3.2 Cryptographic Object URIs

Data objects in the database and their attributes are referenced using URIs. The general
format is:

Security

107M-Switch Advanced Administration Guide



"icrypto:" <type> ":" <provider> ":" [<id>] [ ":" <attribute>]

For instance:

icrypto:cert:softkey:0000000002:trust-anchor

which refers to the attribute of a certificate indicating if it is a trust anchor.

8.6.3.3 URI Type

The <type> field gives the type of the data object, and can be one of:

config
A generic configuration item

cert
An X.509 certificate

prikey
The private key of an asymmetric key-pair

pubkey
The public key of an asymmetric key-pair

seckey
A symmetric, secret key

crl
A certificate revocation list

tls
TLS specific configuration information

Normally, a private key is associated with a certificate loaded at the same time, normally
from a PKCS#12 file. As a result, the URI for the certificate can be used to refer to the
private key when the latter is needed for signing.

8.6.3.4 Provider

The provider indicates with which underlying cryptographic provider the data object is
associated. Currently only the provider softkey is supported, which uses OpenSSL.

The ID portion is specific to the provider.

8.6.3.5 Attributes

Objects have certain attributes which are intrinsic to them. It is also possible to add meta-data
to objects. This is mainly done for certificates. In particular:

trust-anchor
This is a string which indicates the circumstances in which the public key in the
certificate is trusted - forming the start of a certificate path.

private-key
The URI of the private key which is the pair of the public key in the certificate.

<type>-<N>
The <type> is the short form of subject alt. name key (see below), and <N> is a number.
This adds what acts as an additional subject alt. name for the certificate. This enables
one to find the certificate using a local value, such as the DN of an entry in the local
Directory server.

Security

108M-Switch Advanced Administration Guide



8.6.3.6 Certificate Search URIs

It is possible to specify a URI which will initiate a search within the database for matching
certificates. The URI must omit the “icrypto:cert:?” portion of the URI which are
prepended automatically. See the Command Line Tool section below for an example.

The search terms are introduced by “?”, and the search terms are: a key; “=”; and then a
value depending on the key. If there is more than one term, they can be separated by “;”
or “|”. If there is more than one term, then all terms must match.

The available keys are:

serial
certificate serial number (hex for the value part of the DER encoding of the serial
number)

issuer
DN string value for the issuer of the certificate

subject
DN string value for the subject of the certificate

path-to-name
DN string value of the path to name

subject-keyid
hex for the OCTET STRING value of the subject key ID

issuer-keyid
hex for the OCTET STRING value of the issuer key ID

key-usage
Key usage - can be hex bit bask, using OpenSSL bit assignments, or a name for a
single bit, one of: digitalSignature, contentCommitment,
keyEncipherment, dataencipherment, keyAgreement, keyCertSign,

cRLSign, enciphermentOnly, decipherOnly

key-algid
Key algorithm ID expressed as a numeric OID string

valid
Either a UTCTime string or a GeneralizedTime string giving a date/time at which the
certificate should be valid.

pkey-valid
A date/time when the private key should be valid.

subject-alt-name
Test for certificate containing a subject alt. name of the given type. For othername
type, the value is the numeric OID string for the type. Otherwise the subject alt name
type string, as in the following items:

rfc822name or mail
subject alt name, a email address string

dNSName or dns
subject alt name, a hostname string

x400Address or x400
subject alt name, in RFC 2156 string format

directoryNameor dn
subject alt name, a DN string

ediPartyName
subject alt name, not currently supported

uniformResourceIdentifier or uri
subject alt name, a string

Security

109M-Switch Advanced Administration Guide



iPAddress
subject alt name, not currently supported for values

registeredId
subject alt name, not currently supported for values

trust-anchor
matches the trust-anchor metadata attribute for a certificate. A presented value of “any”
matches any attribute value. An attribute value of “any” matches any presented value.
Otherwise the presented value must be a substring of the attribute value.

Searching for subject alt. name values, will include both values in the certificate itself, and
meta-data values.

All keys and values are matched without regard to case.

8.6.3.7 Specifying Passphrases

There are several ways of specifying passphrases for the database as a whole and for data
files being used for import.

pass:<value>
<value> is the passphrase

file:<name>
<name> is the name of a file which contains the passphrase in the first line

env:<var>
The passphrase is taken from the environment variable called <var>

stdin
The passphrase is read from standard input with a prompt if it is a terminal device

8.6.3.8 URI Cache

Objects can be referred to by their URI, or by the cache number returned from a referencing
command. The cache reference is @#@ followed by the number. It is possible to add an
attribute name to the cache reference for an object, e.g.

      #5:trust-anchor

8.7 Signing and Encrypting Messages

You can configure M-Switch to sign (or sign and encrypt) messages. The most likely need
for this is as a message passes through a MIXER gateway, as the changing of the content
will obviously mean that any signature is lost.

In order to do this, you must first configure your security environment, as described in
ICrypto Config.

8.7.1 Internet to X.400

Once you have done set up the Security Environment, messages going from Internet to
X.400 will automatically be signed.

Further changes can be made by editing the M-Switch Config, or the Internet Message
conversion config file used by the mimeshaper channel mimemixer-shaper.xml, as
described in S/MIME Channel Configuration.

Security

110M-Switch Advanced Administration Guide



8.7.2 X.400 to Internet

S/MIME signatures can be generated so that only the content is signed, or so that headers
and content are signed.

Content Only

To sign just the content, you need a content converter something like this:

<convert type="content" action="extract">
  <match name="Content-type">oid\.1\.2\.840\.113549\.1\.9\.16\.1\.6
  </match>
</convert>

<convert type="header" action="sign">
  <param name="SmimeAction">mixed-signed</param>
  <filter command="ppmixer:ipms2rfc">
    <param name="convert-notif-req" />
  </filter>
  <filter command="pplablib:labelinsert">
    <param name="xheader-format">X-Protective-Marking: SEC=%c
    </param>
    <param name="subject-format">Subject: %d [SEC=%c]</param>
  </filter>
</convert>

This results in a message that looks like this:

headers
multipart/signed
    multipart/mixed
        text/plain
        text/plain
    application/pkcs7-signature

Signing Headers and Content

To cause the headers to be signed also, you need a content converter instead. Something
like this will do what you want:

<!-- Converter for generating Signed output from P2,P22 or P772 -->
<!-- generates a multipart/signed  and message/rfc822
     which includes the headers -->
<convert type="content" action="sign">
  <match name="Content-type">(p22?|oid.1.3.26.0.4406.0.4.1)</match>
  <param name="SmimeAction">mixed-signed</param>
</convert>

You still need a header converter to insert labels:

<convert type="header" action="convert" cost="1">
  <filter command="ppmixer:ipms2rfc">
      <param name="convert-notif-req"/>
  </filter>
  <!-- extract label from subject of message -->
    <filter command="pplablib:labelextract">
    <param name="regexp">(?i)(^subject:.*\[Classification:([^]]*)\])
    </param>
    <param name="replace">$2</param>
    <param name="security-policy">uk-demo</param>
    <param name="priority">3</param>

Security

111M-Switch Advanced Administration Guide



  </filter>
  <!-- various label insertions including subject -->
  <filter command="pplablib:labelinsert">
    <param name="xheader-format">X-Isode-Label: %l</param>
    <param name="subject-format">Subject:%d [%l]</param>
  </filter>
  <filter command="pplablib:labelinsert">
    <param name="xheader-format">X-X411: %b</param>
    <param name="need-policy-id"/>
  </filter>
  <filter command="pplablib:labelinsert">
  <param name="xheader-format">SIO-Label: %e</param>
  </filter>
</convert>

You also need to comment out this convertor in the 822 output node

<!--
  <convert type="content" action="wrap">
  <match name="Content-type">(p22?|oid.1.3.26.0.4406.0.4.1)</match>
  </convert>
-->

You should then end up with a message structured like this:

headers
multipart/signed
    message/rfc822
        headers
        multipart/mixed
            text/plain
            text/plain
            ...
    application/pkcs7-signature

Note that there are two sets of headers - which will diverge as the message transits the
MTS.

Note that the two configurations above both result in clear S/MIME signatures.

By changing the SmimeAction param to “signed” (whether headers are being signed or
not), an opaque signature will result, i.e. a message structured like this:

application/pkcs7-mime

8.8 Strong Authentication

8.8.1 Channel Configuration

The x400p1 channel can be configured to use strong authentication when performing P1
Bind operations.

To configure strong authentication you should ensure the the Authentication Requirements
for the Remote MTA P1 channel are configured to include Strong Authentication. Simple

Security

112M-Switch Advanced Administration Guide



Authentication and MTA Name Present can also be selected – the MTA will attempt
strong authentication first if both strong and simple authentication are selected.

You can now configure the security environment for the X.400 P1 channel. This is shown
in the diagram below, and described after that.

Note: The X.400 P1 security environment is now configured using the Security
Database. From R19.1, the use of File Based security environment is no longer
supported. See  M-Switch Administration Guide.

Figure 8.1. Setting the X.400 P1 security environment.

Main Tab

Allow P1 Binds with Invalid X.509 Subject DNs
The default of No means that Strong Binds using an X.509 Certificate whose Subject
DN does not match the DN in the Bind, are not allowed.

Security Tab

Create a new X.509 Identity for x400p1 channels
This button starts a wizard which creates a new PKCS#12 Certificate in the Security
Database for use by x400p1 channels. This results in a Certificate Signing Request
(CSR) being generated. This will require a Certificate Authority to generate the
PKCS#12 for importing into the Security Database.

The PKCS#12 is added into the Security Database with an index key which is a string
used when an application such as the x400p1 channel wishes to reference the Certificate.
By default this is the value x400p1. If no value is specified and the a Certificate with
x400p1 already exists, the Certificate is added into The Security Database with the
value x400p1_1 x400p1_2 ... as necessary.

Security Configuration Name
The index key into the Security Database to be used by the x400p1 channel. If unset
this is the value x400p1. If the index key x400p1 is not in the Security Database the
default default is used by the x400p1 channel.

If you check AET Valid in the Authentication Requirements then the X.400 P1 channel
will not only ensure that the AET in the bind is valid (by reading the DN to retrieve the
configuration of the remote MTA) but also check that the subject DN in the X.509 certificate
provided in the bind matches the AET. You can disable the latter check by selecting Allow
Invalid DNs in Bind on the Main tab.

Security

113M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#ConfigMTAs_01_06


8.8.2 Generating digital identities to be manually imported

To generate the cryptographic token required to enable Strong Authentication, the X.400
P1 channel must be provided with a Digital Identity. This must be in the form of a PKCS12
file including an X.509 certificate and private key.

Generally the wizard described in Section 8.8.1, “Channel Configuration” should be used
to do this. However a PKCS#12 Certificate can be generated outside of MConsole and
imported into the Security Database as described in  M-Switch Administrator Guide

This is a three stage process:

1. Generating a Certification Signing Request

2. Generating and signing of the PKCS12 Certificaye by a Certification Authority

3. Importing the PKCS#12 file into the security environment of the X.400 P1 channel

The Certification Authority may be a commercial organization such as Verisign, or you
may use the Isode Certification Authority: SodiumCA.

8.8.2.1 Creating a CA Using Sodium CA

See the M-Vault Administration Guide to create the initial CA.

8.8.2.2 Generating a Digital Identity

This is done using the Isode tool SodiumCA. Run SodiumCA and browse to the cn=x400p1
channel of the MTA for which you wish to generate the Digital Identity

Select the channel, and select Generate X.509 Identity....

Figure 8.2. Generating A Certificate Signing Request: Selecting the Subject
DN

You can now add a Subject AltName. For P1 entries, there are currently no values you
are likely to want to add (possible future values are Global Domain Identifier and MTA
Name).

Security

114M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#ConfigMTAs_Sec_DB_config


8.8.2.3 Importing the PKCS#12 Certificate to the x400p1 security
environment

Import the PKCS#12 Certificate generated outside of MConsole into the Security Database
as described in  M-Switch Operators Guide

Click on Finish.

You can now configure the passphrase for the private key. A random passphrase is generated
for you or you can use your own value. In either case you will need to configure this value
in a passphrase file in the directory in which the Digital Identity is being stored.

You need to ensure that you trust the certificate chain for the CA which issued your
certificate. The CA which generated your Digital Identity should tell you what to do (if
anything).

If you are using Sodium CA, you must ensure that each Digital Identity that is to be used
by the local and remote X.400 P1 channels has the certificate of the issuing CA of both
certificates in the security environment.

The CA certificate can be exported from Sodium CA into the Security Environment directory
used by the P1 channel using the CA Components tab and exporting as DER. You should
save the file as a .crt file in the directory configured to hold the trust anchors as described
in  M-Switch Administration Guide.

8.9 Table Based Authenticated Entities

Access to the M-Switch Queue Manager uses the Simple Authentication and Security Layer
(SASL) to provide authentication for connections which use the SOM (Switch Operational
Management) protocol. Usually the Directory is used to configure these Entities. This is
described in  M-Switch Administration Guide

For those Switches using table based configuration rather than the Directory, a simple
XML table can be used for storage of SASL ids, passwords and associated access rights.
This section describes how the Queue Manager is configured and makes use of these other
resources using the XML table to configure the SASL IDs

To enable the use of XMLDB, add the following PP variables:

set sasl_auxprop_plugin=xmldb
set sasl_xmldb_file=”sasldb.xml”

Create the following file in ETCDIR/switch/sasldb.xml.

[?xml version="1.0" standalone="yes"?>
<sasl-data>
  <user name="John.Smith@isode.com">
    <att name="userPassword" servpass:encrypt="true">secret</att>
    <att name="somAccessRight">FULL</att>
  </user>
</sasl-data> 

The standard servpass section allows the configuration of the Service Password service
and verifier information. This allows SOM passwords elsewhere in the configuration file
to be encrypted using the spasscrypt tool: these passwords are then decrypted at the

Security

115M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#ConfigMTAs_Sec_DB_config
../swadm/SWADM.pdf#ConnectOtherX400MTAs_07_02
../swadm/SWADM.pdf#QueueManagerAuth_01


point of use. For more information on the Service Password mechanism, see  M-Switch
Administration Guide

Security

116M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#AlertDaemon_07
../swadm/SWADM.pdf#AlertDaemon_07


Chapter 9 M-Switch Authorization
M-Switch is responsible for processing messages. This Chapter describes the post routing
Authorization checks which can be configured to take place when the MTA is considering
how to handle a message and its recipients.

9.1 M-Switch Authorization

The M-Switch Authorization features allows the configuration of rules which control the
way in which messages are processed. For example:

• Controlling which routes for a message are permitted or blocked

• Controlling when a message is subject to content checking (e.g. for Viruses or Spam)

• Controlling when a message is subject to other checking (e.g. for Message size, or
presence of Security Labels)

• Controlling when a message is archived

• Determining the inbound SMTP channel based on the calling SMTP system

• Controlling when a message is put into the held state on submission

There are two types of configurable items:

• groups: allow rules to use single reference to specify a set of entities, e.g. channels, IP
addresses. Wildcards are supported.

• rules: a way of permitting or blocking messages and/or recipients.

A rule has the following components:

Description
This is text which distinguishes the rule from other rules, and is useful for describing
the rule's intent. When using the Corrector Channel, the text is used to help the operator
identify the error. See M-Switch Administration Guide. In some cases the text is also
used in logging and other places when the rule is applied.

Type
This indicates the action to be taken when the rule is triggered

Priority
When different rules are triggered, the rule with the highest numerical priority takes
precedence. E.g. A rule of Priority 2 takes precedence over a Rule of Priority 0. This
defaults in the UI to zero priority.

Filter
The filter is a logical test on the properties of a message and recipient (or the SMTP
caller for SMTP channel determination). If there is no filter, or the filter evaluates to
true, then the rule is said to be triggered. Otherwise the rule is ignored.

9.1.1 Rule Types

Block, Permit
These rule types work together to control if a message is allowed through or not. If
the filter is true for a block rule and a permit rule with the same priority, then the
block rule "wins" and the message is not permitted. These rules can be used for
outbound channel selection based on different message and routing properties. They
can also be used for other authorization purposes.

M-Switch Authorization

117M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#Corrector_Channel


InChan
Used for inbound SMTP channel selection. Each such rule has an associated channel
name. If the supplied channel key matches the key for the channel, and the filter is
true, then that channel is selected. If no channel is selected, and there is a channel
whose key value matches the key from the server and which does not have an associated
InChan rule, then that channel is used as the default channel.

Archive
If the filter is true then the message type detailed in the subtype is archived to disk.

If the subtype is Inbound messages, only inbound messages will be archived to
disk.

If the subtype is Outbound messages, only outbound messages will be archived to
disk.

If the subtype is Inbound messages and generate index, only inbound messages
will be archived to disk. It uses the content scanning subsystem, loading an appropriate
indexer (see submitscanconfig.xml). The generated index is just a CRLF separated list
of the "words" in the ia5text and subject of the message.

Archive by email
An email address has to be associated with the rule (either an RFC822 address or a
string-encoded O/R Address). If the filter is true then the address is added to the
message as an additional recipient (i.e. an "archive by email" recipient) and the message
is not archived to disk.

Check
If the filter is true then the message is checked. If there is no associated channel list,
then a checking channel is found which supports the content type of the message. If
a channel list is associated with the rule, then that gives a sequence of checking channels
to use.

Hold
If the filter is true then the recipients of the message are set to the held state. This
means that no further processing of the message will occur until either the message is
manually released (i.e. recipients set back to their normal state, allowing processing
to continue), manually non-delivered or times out.

9.2 Authorization Groups

Authorization Groups provide a means for identifying set of entities which belong together
and can be referenced collectively in Authorization Rules.

Groups: Can specify a set of

• Internet Address

• X.400 O/R Addresses

• Internet MTA names

• X.400 MTA Names (ie the DN)

• TCP Addresses (IPV4 or IPV6)

9.2.1 Creating An Authorization Group

To create an Authorization Group, Select MTA -> Authorization -> Add and enter suitable
values into the Popup.

M-Switch Authorization

118M-Switch Advanced Administration Guide



Figure 9.1. Creating an Authorization Group

Group Name
Enter the name of Authorization which wil be used in the Authorization Rule to refer
to this Group.

Match Type
Enter the type of match to be used when comparing the the Value passed into the Rule
during checking, with the value in the Group.

Possible Match Types are:

• email-match

• email-suffix

• email-pattern

• string-match

• string-suffix

• string-pattern

• oraddress-match

• oraddress-suffix

• oraddress-pattern

• hostname-match

• hostname-suffix

• hostname-pattern

• hostdn-match

• hostdn-suffix

• hostdn-pattern

• ipv4-match

• ipv4-pattern

• ipv6-match

• ipv6-pattern

Value
The value against which the Value passed into the Rule is checked. NB only a single
value is permitted here which can include regular expression values if the Match Type
is one of the "-pattern" types. To configure multiple Values when wildcards are not
appropriate, each value requires a new Group, but with the group name duplicated.

M-Switch Authorization

119M-Switch Advanced Administration Guide



9.2.2 Authorisation:Testing Group Entries and Matching

A command line utility is available to test if a value is in a group: C:\Program
Files\Isode\bin\grouptest.

The usage for this is :

C:\Program Files\Isode\bin\grouptest <tag> <datatype> <value>

[<groupname>]

Example invocations:

C:\Program Files\Isode\bin\grouptest -help

C:\Program Files\Isode\bin\grouptest testTag d

"cn=x400p1,cn=tmm1.isode.net,cn=Messaging

Configuration,o=Isode,o=messaging"

Output:

# grouptest testTag d "cn=x400p1,cn=tmm1.isode.net,cn=Messaging Configuration,o=Isode,o=messaging"
testTag: groups: ba-groups

NB the tag is an arbitrary value which is simply repeated in the output, but has no other
function.

The above output shows that the DN is in the group ba-groups

9.3 Rule Filters

A rule filter is used to express the conditions under which a rule is triggered. It is a logical
expression built up of basic components, combined by logical and, or and not operators.
The basic components are tests on the properties of a message, a recipient of a message,
or the SMTP caller for the case of a SMTP channel selection rule.

9.3.1 Basic Components

These have the form:

( item operator value )

for instance:

(inchan=smtp-external)

The type of the value depends upon the item and the operator. Items with values which are
IP addresses, MTA names and Email addresses can be members of M-Switch Groups.

Within a filter special characters can be escaped by use of "\".

M-Switch Authorization

120M-Switch Advanced Administration Guide



9.3.2 Building Filters

Filters can be built up from basic components combined with compound operators. Below,
a filter is either a basic component or one of the constructs below, and a filter-list is the
concatenation of one or more filters.

Negation Operator Formed by:

(! filter )

Negates the sense of the enclosed filter.

Boolean AND Operator Formed by:

(& filter-list )

Gives true if all the filters in the list give true.

Boolean OR Operator Formed by:

(| filter-list )

Gives true if at least one of the filters in the list give true.

9.3.3 Items

9.3.3.1 SMTP Caller Items

These are the only items which should be used in the SMTP channel rules (INCHAN rules).

inmta
The hostname of the SMTP caller, found by reverse lookup of the calling IP address.

inip
The IP address of the SMTP caller.

authid
The authorization ID of the message (SMTP AUTHID), the empty string if not
authorized.

9.3.3.2 Standard Message Items

Note that, for the inmta and outmta items, the correct form for the MTA name is that which
appears in ckadr output. For non-SMTP using directory routing this is the DN of the AE,
not that of the AP.

If you are using mta in auth rules, the best way of doing this is to use a group and a suitably
defined group member entry.

For authorization checks to be made the -i -m -s options and values must be specified.

inchan
The Switch channel on which the message arrived

inmta
The MTA from which the message was transferred

sender
The address of the sender of the message

M-Switch Authorization

121M-Switch Advanced Administration Guide



authid
The authorization ID of the message (SMTP AUTHID) the empty string if not
authorized.

recip
The recipient address

outmta
The (proposed) outbound MTA

outchan
The (proposed) outbound channel

type
The message type, one of message, report, probe

subtype
The message subtype. For X.400 messages, an Interpersonal Notification has a subtype
of ipn, while a standard Interpersonal Message does not have a subtype value set. For
Internet messages, the subtype field will be set for MIME messages of type
multipart/report, from the report-type qualifier, so Message Disposition Notifications
will match a filter of subtype=disposition-notification and Delivery Status
Notifications will match a filter of subtype=delivery-status. Other Internet
messages do not have a subtype set.

content
The content type of the message, the value being the standard M-Switch string
representation.

size
The size of the message in bytes

priority
The message priority

The message priority is one of these values, ordered from high to low:

• override

• flash or urgent

• immediate

• priority or normal

• routine

• deferred or non-urgent

• bulk

• junk

9.3.3.3 Message Security Items

These rule items cause various security items to be checked. The clearance items use any
security label in the message, and check that against the corresponding clearance using the
configured security policy with the Access Control Decision Function. Further configuration
is required for these items.

• signature Check any signature on the message. The possible values are (in increasing
order): fail, warning, absent (i.e. no signature to check), ok

• userclearance Check label against recipient's clearance

• mtaclearance Check label against outbound MTA’s clearance

• chanclearance Check label against outbound channel's clearance. The possible clearance
values are, in increasing order: denied, absent, granted

• numsics The number of Subject Information Codes in the message.

M-Switch Authorization

122M-Switch Advanced Administration Guide



• classification The classification of the message. The possible clearance values are
no-label, unmarked, unclassified, restricted, confidential, secret or top-secret. An
integer value in the range 0 (no-label) to 6 (top-secret) can also be used.

• label-errors The number of errors which occurred during Security Label processing.

9.3.4 Operators

The available operators are:

=
Gives true if the item matches the value. The value is an appropriate literal value.

:
Gives true if the item is in the named group. The value is the name of a group.

+
Gives true if the items have a group in common. The value is another item.

< <= > >=
Comparison operators. Valid for items whose values are ordered. The value is a suitable
value.

The first three operators can be preceded by ! which negates the sense of the operator.

9.3.5 Example Filter

(|(outchan=x400p1)(outchan=x400-ba))

This example is True if one of the following is True:

• The outchannel is x400p1

• The outchannel is x400-ba

If Rule is a block Rule, that means message will be routed using this channel UNLESS a
higher priority Permit Rule is present.

9.4 Authorization Rules

9.4.1 Block Rules

The following Rule is an example of a Block rule.

M-Switch Authorization

123M-Switch Advanced Administration Guide



Figure 9.2. Example Block Rule

This Rule prevents and message being routed using the x400p1 channel or the x400-ba
channel. The Priority is zero, which means that higher Priority rules can be used to allow
the channels to be allowed under specific conditions (see Permit Rule section Section 9.4.2,
“Permit Rules”).

9.4.2 Permit Rules

The following Rule is an example of a Permit rule.

Figure 9.3. Example Permit Rule

This Permit Rule has a Filter which is True if both the following are True:

• The outbound MTA is not in ba-groups

• Outchan is x400p1

I.e. this overrides the previous Block Rule so that messages to MTAs not in the ba-groups
Group are transferred using the x400p1 channel.

The following Rule is a second example of a Permit rule.

M-Switch Authorization

124M-Switch Advanced Administration Guide



Figure 9.4. Example Permit Rule 2

This Permit Rule has a Filter which is True if both the following are True:

• The outbound MTA is in ba-groups

• Outchan is x400-ba

this overrides the previous Block Rule so that messages to MTAs in the ba-groups Group
are transferred using the x400-ba channel.

9.4.3 Combining Block Rules and Permit Rules

The above examples demonstrate an important principle often needed when configuring
Authorization Rules. You need to combine Permit Rules at a higher priority than a block
rule. The necessity of the Block Rule exists because configuring a Permit Rule on its own
does not imply that a Permit rule bing False causes Routing to be blocked - rather a specific
Block Rule must be configured.

9.5 Testing Authorization

Testing Authorization is carried out using the ckadr utility. By default ckadr is used to
check Routing configuration prior to the application of Authorization Rules. This is
described in multiple places in the M-Switch Manuals, including M-Switch Administration
Guide.

9.5.1 Testing Authorization: ckadr Usage

This section describes ckadr invocation to report Routing results which include
Authorization checks=.

usage: ckadr [options] [address...]

options:
    -a            Normalize all domains
    -d            DN submission
    -n            Not responsible (originator)
    -o            Set originator number
    -p (R|X)      Address parse only (as Internet or X.400)
    -r            Check as Internet address
    -v            Verbose mode

M-Switch Authorization

125M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#RoutingInformation
../swadm/SWADM.pdf#RoutingInformation


    -x            Check as X.400 address
    -z            Don't allow redirection

Authorization checking options:

    -c <type>     Content type
    -e <eits>     Encoded Info. Types
    -i <chan>     Inbound channel
    -l <size>     Message size
    -m <mta>      Inbound MTA
    -s <address>  Sender address
    -t (m|r|p)    Message/Report/Probe
    -u <prio>     Message priority

For authorisation checks to be made the -i -m -s options and values must be specified.

9.5.2 Testing Authorization: ckadr examples

The following shows that messages to MTAs not in ba-groups are transferred using x400p1.

# ckadr -v -x -s foo@example.com -i x400p1 
    -m "cn=x400p1,cn=bevan.isode.net,
    cn=Messaging Configuration,o=Isode,o=messaging" 
    "/CN=P7User1/O=tmm2/ADMD= /C=gb/"

/CN=P7User1/O=tmm2/ADMD= /C=gb/ 
    ->  (x400)  /CN=P7User1/O=tmm2/ADMD= /C=gb/
/CN=P7User1/O=tmm2/ADMD= /C=gb/ 
    -> (rfc822) "/CN=P7User1/O=tmm2/ADMD= /C=gb/"@bevan.isode.net

Delivered to cn=x400p1,cn=tmm2.isode.net,cn=Messaging Configuration,
    o=Isode,o=messaging by x400p1 (weight: 5)
Auth: S-MTA-AuthPermitted Route permitted: ba-perm2

Archiving

9.6 Closed User Groups

Groups are a mechanism which enables a Rule to refer to a set of entities with a single
reference.

Groups are also used in conjunction with closed user group values to specify which entities
can send to recipients which are within a closed user group.

A group is identified by a simple name, which can be anything. It is a good idea to use
names which relate to the purpose of the group.

9.6.1 User Membership of Groups

Users (i.e. addresses) can be members of groups by the use of Directory attributes. The
entry to which the attributes can be added depends upon the user type. For X.400 users,
the entry is the “white pages” entry, unless there is no such entry, in which case the routing
tree entry is used. For Internet users, it is the entry which is found using LASER routing
lookup.

M-Switch Authorization

126M-Switch Advanced Administration Guide



There are two attributes:

• mhsUserGroup for normal group members

• mhsClosedUserGroup for restricting senders to this address

The attributes are multi-valued, so the address can be a member of more than one group,
and can be a normal group member, and a closed user group member. The auxiliary object
class mhsAuthUser is used to enable the adding of these attributes to an entry.

Making the membership of a group or set of groups an attribute of a user entry in this way
means that any Isode MTA which accesses the user entry in the course of routing or
delivering a message can use the group membership(s) in Rule processing.

9.6.2 MTA-specific groups

The Directory attributes described in the preceding section are shared by all MTAs using
that information. There can also be per-MTA group membership definitions. These can
specify groups based on addresses and other types of value.

For a Directory-based configuration of the M-Switch system, the group membership
information is held in the Directory, and then downloaded into an internal cached format.

For an M-Switch system which is not using the Directory to hold the information, the group
information is defined in a text file, which is converted to the internal cached format using
a command line tool.

The group membership information is a set of triples, each of which defines a way some
values can be associated with a group. The three values are:

• group name The name of the group. You can have many items with the same group
name

• key type The data type of the value.

• key value The value used in matching.

When a rule filter is checking if an item is a member of a group (or not) then only group
membership rules of the appropriate data type are used. For instance, a sender address will
only be checked against either Internet address items, or X.400 address items, depending
on its value.

For a non-Directory based configuration, the text file is a sequence of lines, each of which
has one triple, with the three values separated by colon characters. The table is built by
running the program groupbuild. It takes one optional command line argument, which
is the input file name. If this is not specified, then the input file is grouptable.dat in the
configured table directory.

For a Directory-based configuration, group membership is configured in the Authorization
tab for the MTA in question.

9.6.3 Special groups

There are a couple of groups for which there is automatic group membership.

empty The sender is a member of this group if it is absent, e.g. for an X.400 Report or an
Internet DSN.

redirected A recipient is a member of this group if the address has been redirected locally.

9.6.4 Closed User Group Operation

If a recipient is a member of one or more closed user groups, by virtue of having one or
more mhsClosedUserGroup attribute values, then the authorization system restricts the

M-Switch Authorization

127M-Switch Advanced Administration Guide



senders who are allowed to send to that recipient. The sender must be a member of a normal
group which has the same name as one of the closed user groups to which the recipient
belongs.

The group membership of the sender can be derived by any of the group membership
mechanisms.

To create a true closed user group, i.e. a set of users who can only send to each other,
choose a unique group name, and set that name for both the mhsUserGroup and
mhsClosedUserGroup attributes.

However, different kinds of group membership can be used to give access control to recipient
addresses (e.g. mailing lists) based on other criteria. For instance, membership of the normal
group corresponding to the closed user group could be specified as a partial address, which
matches all internal addresses for an organization.

M-Switch Authorization

128M-Switch Advanced Administration Guide



Chapter 10 Boundary MTA
Using M-Switch at the Boundary between Domains M-Switch has features which make it
very suitable for use at the boundary between different domains.

10.1 Features

• Address Conversion

• Content Conversion. (See Chapter 6, Content Conversion).

• Modification of Acknowledgement Requests

• Generation of Acknowledgements at the Boundary

• Route dependent processing

10.2 Acknowledgements in a Boundary MTA

[This sections applies to R15.0 and later]

10.2.1 Acknowledgements

In this context, the term ‘Acknowledgement’ is used as a general term for these different
messaging objects:

• X.400 Reports, both delivery reports and non-delivery reports

• X.400 Inter-Personal Notifications (IPNs)

• Internet Delivery Service Notifications (DSNs)

• Internet Message Disposition Notifications (MDNs)

Messages request these acknowledgements in different ways:

• Reports are requested through per-recipient user requests and mta requests

• IPNs are requested through per-recipient notification requests in the message heading

• DSNs are requested through a per-recipient SMTP extension (NOTIFY)

• MDNs are requested through a per-message heading field

When M-Switch acts as a MIXER gateway, converting between X.400 and Internet
messages, it:

• Converts between X.400 Reports and Internet DSNs

• Converts between X.400 IPNs and Internet MDNs

In addition, the requests are converted, if possible:

• The X.400 user report requests are converted to/from the SMTP NOTIFY extension

• The IPN requests are converted to/from the Disposition-notification-to field
in the Internet message heading

Boundary MTA

129M-Switch Advanced Administration Guide



The latter in particular is subject to some configuration.

As a result of these equivalences, we will refer generically to:

• Reports, i.e. either X.400 Report or Internet DSN

• Receipts, i.e. either X.400 IPN or Internet MDN (this term is derived from the common
usage for MDNs as ‘Read Receipts’)

Reference is made to report requests, and receipt requests generically.

When M-Switch generates a report or a receipt, the type depends upon the content type of
the subject message. E.g. when generating a report, if the subject is X.400, then an X.400
Report is generated, if the subject is an Internet message, then an Internet DSN is generated.

10.2.2 Adding Acknowledgement Requests

M-Switch can change the acknowledgement requests to ensure the message requests reports
and/or receipts. This would be used when it is known the target domain does generate
acknowledgements, and you desire to ensure that it does even if the sender of the message
had not requested them. Note that this can result in the sender receiving unexpected
acknowledgements.

• To ensure that reports are requested, set the outbound channel's boundary-ack variable
(set in the Advanced Tab of the channel's properties) to "add-request".

• To ensure the message content has a receipt request, set the channel's "subtype out"
to the string "add-ack-req".

The latter will cause the relevant shaper channel to be used. The default configurations
already have the converters for the outer heading which will set the required request. For
the details, see the relevant content conversion filters.

10.2.3 Generation of Acknowledgements on Transfer or
Delivery

M-Switch can generate reports and receipts when a message is successfully transferred or
delivered. This feature is used when it is suspected or known that the receiving domain
does not generate acknowledgements, and that it is desired to ensure that they are generated.

The feature is configured by setting the "boundary-ack" value for the outbound channel
(configured in the Advanced tab of the channel's properties). These values are used for
this feature:

gen-report
Generate a report for the message's recipients, if requested by the message's originator.

force-report
Generate a report, even if not requested by the originator.

gen-receipt
Generate a report for the message's recipients, and a receipt for each recipient if
requested by the originator. Note that is it possible in this case to get receipts but not
a report.

force-receipt
Generate a report and receipts, even if not requested.

It is also appropriate to suppress receipt requests within the content when using this option.
If this is not done, the originator might be confused by multiple read receipts. To configure
the outbound channel such that these requests are removed, set the channel's subtype-out
to "remove-ack-req". This will cause to be used conversions with this effect, which are
already set up in the standard shaper channel configuration XML files.

Boundary MTA

130M-Switch Advanced Administration Guide



In a MIXER gateway, the type of the report or receipt is determined by the type of the
message when it arrived, rather than by the type of the message when transferred or
delivered, which can be different.

For an X.400 message, the mta requests control the optional generation of a report. If the
originator has not requested the report, it will discarded rather than delivered to the
originator. For the forcing cases, however, the user requests are altered so that the report
will be delivered.

For an X.400 message, when receipts are not being forced, it is necessary to determine the
originator's requests by matching the envelope recipient with the recipient specifier in the
heading of the message, which is where the notification-requests are to be found. It is
possible that there is no such match, e.g. following list expansion. In that case no IPN will
be generated. This matches the correct behaviour of an X.400 UA.

For generated MDNs, there is a specific MDN type used for the generated text body and
subject. These can be configured.

When these options are set, the envelope report requests are automatically changed, so that
requests for positive reports are not sent to the receiving MTA. This suppresses the
generation of positive reports later on. However, it is possible that a non-delivery report
will be generated at some later point for the message. Any correlation of reports with
messages should allow for this possibility.

10.2.4 Use of Multiple Outbound Channels

It is possible in a boundary MTA that you need to send messages to different domains with
different characteristics. As the configuration of the features is controlled through the
properties of the outbound channel, you may need to configure multiple outbound channels
for sending to these different domains.

10.3 Use of Multiple Outbound Channels

There are occasions when it is necessary to have multiple channels of the same basic transfer
protocol type (e.g. X.400 P1, or SMTP). The core reason is that is is necessary to have
different values for items which are configured on a per-channel basis. For instance:

• content-out lists the content types which can be transferred over the channel.

• content subtype-out sets a subtype which controls aspects of content conversion.

• bodypart-out lists the X.400 exclusively acceptable encoded information types for the
channel.

• protocol specific aspects of the way the channel connects to a peer MTA, e.g. the use of
the nomx flag.

Boundary MTA

131M-Switch Advanced Administration Guide



Chapter 11 Troubleshooting
Some of the troubleshooting tools and techniques described in this chapter can be followed
routinely as preventative measures, as well as being used when a problem is encountered.

11.1 Checking the configuration

The ckconfig tool, which can be found in (SBINDIR), performs various checks on the
configuration of an MTA including:

• Checking that all the required directories are in place and have appropriate permissions.

• Checking that all the channels and filters, which are described in the MTA tailoring,
exist and reference programs in (LIBEXECDIR).

• Checking that any tables described in the MTA tailoring exist and reference files in the
appropriate directory (as defined in the Table directory field on the Advanced page of
the MTA’s properties in MConsole).

ckconfig should be run on the system on which the MTA resides. Where there are several
MTAs in a configuration, you should run ckconfig on each MTA host system. Although
it is advisable to check the configuration with ckconfig before starting the MTA, the tool
can equally be used while the MTA is running.

The command line for running this tool is:

ckconfig <options>

where options can be one or more of the following:

-f

(force) ckconfig will attempt to automatically correct configuration errors. The default
action is that ckconfig will prompt for correction of any configuration errors it
identifies.

-v

(verbose) ckconfig will display correct configuration information as well as displaying
configuration errors.

-n

(no execution) ckconfig will perform all its checks and report back the results. No
automatic correction will take place and the user will not be prompted for corrections.

-t <filename>

Use the file identified by filename as the mtatailor file instead of the default, ()mtatailor.

It is worth running this program at intervals and after you make changes to the MTA
configuration.

If you are not using Directory based routing and tailoring, you may also need to rebuild
the MTA tables database after reconfiguration of the MTA. See  M-Switch Administration
Guide.

Troubleshooting

132M-Switch Advanced Administration Guide

#StartStop_N_02
#StartStop_N_02


11.2 Checking addresses

The address checking tools, ckadr and probe, can be found in the directory (SBINDIR).
ckadr can be used with or without the MTA running.

Probe can only be used with X.400 addresses, and the messaging system needs to be
running. In a configuration with several MTAs, the tools should be run on each system on
which an MTA resides, to check the address handling configuration of that MTA.

11.2.1 ckadr

The ckadr tool checks whether an address is acceptable to the MTA. The tool can either
be run from a command line or interactively. In both modes command options allow you
to tailor its behaviour. The command line takes the form:

ckadr [<options>] <address> [<address>...]

where <address> is the address you want to check. If an address contains white space it
should be quoted to avoid being split up into separate arguments. <options> can be one
or more of the following:

-a

Normalise all the domains specified in the address.

-d

DN Submission

-n

Not responsible (route as originator)

-o

Set Originator number

-r

Treat all addresses as RFC 822 format addresses. This is the default behaviour unless
the system is configured as a pure X.400 system.

-p

(R|X) Address parse only (as Internet or X.400)

-v

(verbose) Extra information about the address is displayed, for example, redirection
history.

-x

Treat all addresses as X.400 format addresses.

-z

Do not allow redirection

Authorization Options:

-c <type>

Content type

-e <eits>

Encoded Info types

-i <inbound channel>

Sets all addressing characteristics based on the specified inbound channel

Troubleshooting

133M-Switch Advanced Administration Guide



-l <size>

Message size

-m <mta>

Inbound MTA

-s <address>

Sender address

-t <m|r|p>

Message/Report/Probe

-u <priority>

Message Priority

In most cases, ckadr will correctly parse an X.400 address even if you say it is an RFC
822 address and vice versa. However, there are some cases where this is not so. You should
therefore be careful when using ckadr and different address formats.

To run ckadr interactively, enter:

ckadr [<options>]

It will then attempt to read the address(es) to be checked from standard input, parsing each
line of input as though it were an address. Any address containing white space should be
quoted. To exit press the Control and c keys.

If ckadr is invoked with command line arguments other than those described above, it will
attempt to parse these arguments as addresses.

No authorization checks are performed. An address may be acceptable to ckadr but the
MTA may reject it later, when it is submitted for delivery, because of authorization
restrictions. Configuring authorization is covered in  M-Switch Administration Guide.

If the address is acceptable, ckadr will display how the address was parsed and how the
MTA will route this address. For example, the command line:

ckadr mjf@widget.com ir@widget.com

might return:

mjf@widget.com -> (rfc822) J.Ford@widget.com
mjf@widget.com -> (X.400) /I=J/S=Ford/PRMD=WIDGET/ADMD=GOLD 400/C=GB/

Delivered to sales.widget.com by 822-local

ir@widget.com -> (rfc822) I.Ritchie@widget.com
ir@isode.com -> (X.400) /I=I/S=Ritchie/PRMD=WIDGET/ADMD=GOLD 400/C=GB/

Delivered to sales.widget.com by 822-local

The first lines for both the above addresses show that the addresses mjf@widget.com and
ir@widget.com have the aliases (or synonyms) J.Ford@widget.com and
I.Ritchie@widget.com respectively. If you do not want ckadr to expand aliases, then
include the -n option.

The second line shows the X.400 address that would be tried if the MTA was unable to
locate the recipient using RFC 822.

The third line shows the MTA to which the message would be sent,
sales.widget.com,and the channel it would use, 822-local.

Troubleshooting

134M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#SecuringMsgSystem_02


In a MIXER system, the following test could be used to check that incoming X.400 messages
to this recipient would be delivered as RFC 822 messages:

ckadr -x "I=j; S=ford; P=widget; A=gold 400; C=gb"

A successful parse of the address would then be returned as:

I=j; S=ford; P=widget; A=gold 400; C=gb -> (X.400) /I=j/S=ford/PRMD
=widget/ADMD=gold 400/C=gb/
I=j; S=ford; P=widget; A=gold 400; C=gb -> (rfc822) 
j.ford@widget.com
Delivered to sales.widget.com by 822-local

If the address is not acceptable, ckadr will display how far it went in parsing the address,
and why it failed to find the address acceptable. For example:

ckadr -x "I=j; S=fort; P=widget; A=gold 400; C=gb"

might return the result:

Address parsing failed:
Reason: Unknown local user 'j.fort'
Parsing gave this:
I=j; S=fort; P=widget; A=gold 400; C=gb -> 
(X.400) /I=j/S=fort/PRMD=widget/ADMD=gold 400/C=gb/
I=j; S=fort; P=widget; A=gold 400; C=gb -> (rfc822) 
j.fort@widget.com

11.2.2 Probes

The probe tool checks whether or not a message would be acceptable either locally or to
a remote mail system.

A message probe attempts to cross the Message Transfer System (MTS) network to its
destination. On arrival at its destination, or at a place where it can no longer be delivered,
a delivery report will always be returned. A message may be stopped before the required
destination because of errors or because it has reached a gateway to a network which does
not support probes. No message is ever delivered to a recipient as a result of a message
probe.

The returned delivery report informs on the future successful or unsuccessful delivery of
a message with the same parameters as those specified in the message probe. The report
can be generated locally or at the remote end, depending on how the channels are configured
in the MTA.

11.2.2.1 Configuring X.400 channels to support probe messages

There is no option to configure this. Channels either support probes or not. X.400 channels
all support probes.

11.2.2.2 Running the probe tool

probe can be called with the command line options described below or interactively. With
command line options, it will attempt to parse the specified options before generating a
message probe. In interactive mode, it will prompt for the options on standard output and
read on standard input until all the information has been received, before generating a
message probe.

The command line takes the form:

Troubleshooting

135M-Switch Advanced Administration Guide



probe -t <recipients> <options>

The options are:

-t <recipients>

probe interprets the arguments up to the next switch as To: <recipients>.

-s <n>

This checks if a message of size n bytes can be delivered to the recipient.

-e <body types>

This checks if the specified body part type(s) can be delivered. The list of types should
be comma separated.

-i

Prohibits implicit conversion.

-a

Allows alternate recipients.

-u <UA identifier>

The UA identifier is a printable string, up to a maximum of 16 characters, which
identifies the probe in subsequent delivery reports.

Note: The probe utility cannot be used in a pure X.400 MTA.

11.2.2.3 Configuring the MTA to reject probe messages

The discard probes option in the MTA tailoring allows you to configure an MTA to
reject probe messages. In the MTA Properties/Advanced window of MConsole, select
the discard probes option and tick the box.

11.3 Other checking tools

There are a number of small utility programs provided with the MTA that may be of interest
to end users. These are described here.

11.3.1 A /bin/mail replacement

In (BINDIR)/mail there is a very simple user interface for submitting messages. It has
approximately the functionality normally assumed by /bin/mail, except that reading mail
is not supported, only submission. That is, it takes a list of addresses on the command line
and reads the body of the message on the standard input. By default all the addresses are
marked as To: recipients. The command has a few options; each option stays in force until
overridden.

-f

The following argument gives the From: address.

-t

The following arguments, up to the next flag, are To: addresses.

-c

The following arguments are Cc: addresses.

Troubleshooting

136M-Switch Advanced Administration Guide



-s

The following arguments are text for the Subject: line.

This program is most useful in scripts and programs as a simple way of sending a message.

11.3.2 A /bin/sendmail replacement

In (EXECDIR)/sendmail there is a very simple user interface for submitting messages. It
has approximately the functionality normally assumed by /bin/sendmail on unix systems,
except that only message submission is supported.

11.3.3 Messaging Configuration Integrity Checking

The (BINDIR)/IntegrityCheck script allows a set of integrity checks to be performed on
an X.400 Messaging Configuration to detect inconsistencies which may have arisen in the
course of configuration modifications. The following checks are performed:

• Scan all routedUA entries in the Routing Trees.

If the routedUA entry represents a P7 Message Store user:

• Check for the presence of an mhsMessageStoreDN attribute.

• Check that the referenced icMessageStore entry exists

• Check that the icMessageStore entry has an mhsORAddress attribute which corresponds
to the routedUA entry.

For all types of routedUA entry, if the routedUA has a White Pages DN:

• Check that the referenced entry exists.

• Check that the referenced entry has an mhsORAddresses attribute with a values which
corresponds to the routedUA entry.

• Scan all White Pages entries, looking for entries which do not have an mhsORAddresses
attribute value, or for any with a value which does not correspond to a configured
routedUA entry.

• Scan all icMessageStore entries, looking for any "orphan" entry which does not have a
routedUA pointing to it.

• Scan all Distribution List entries. For each Distribution List, obtain the set of list members
(ORNames). If the ORName only contains a Distinguished Name, check that the entry
given by the DN exists in the Directory. Otherwise, use the Queue Manager's "ckadr"
functionality to check that the ORAddress component of the ORName can be routed
successfully. This check is intended to identify the situation where an ORAddress has
become invalid (e.g. a local mailbox has been deleted), but the address has not been
removed from one or more Distribution Lists.

The script takes a number of arguments, some of which are mandatory:

-w <password>

Specifies the password to use to decrypt the Bind Profile file

-b <bind profile name>

Specifies the Bind Profile to use

-c <configuration DN>

Specifies the Messaging Configuration to check

-l

List the available the Bind Profiles

-v

Enable verbose logging

-h <queue manager hostname>

Hostname of Queue Manager to contact for routing check (defaults to localhost)

Troubleshooting

137M-Switch Advanced Administration Guide



-P <port>

Port on which to contact Queue Manager for routing check (defaults to 18001)

-u <userid>

The SASL Id to use when connecting to the Queue Manager

-p <password>

The password to use when connecting to the Queue Manager

-m <mechanism name>

The SASL mechanism to use when connecting to the Queue Manager

An example of running the command is shown below:

 IntegrityCheck -b localhost -c "cn=Mixer Messaging Configuration,
 o=messaging" -w secret -u mtaadmin@badger.isode.net -p secret

 Warning: White Pages entry <cn=TESTUSER,cn=White Pages,
 o=messaging> has no mhsORAddresses attribute value of
 /CN=TESTUSER3/O=isode limited/PRMD=ISODE/ADMD= /C=GB/

 Error: routedUA <mHSCommonName=newtest2,
 mHSOrganizationalUnitName=sales,mHSOrganizationName=isode limited,
 pRMDName=ISODE,aDMDName=\ ,c=GB, cn=Main Routing Tree,
 cn=Mixer Messaging Configuration,o=messaging> has invalid White
 Pages DN <cn=newtest2,cn=White Pages,o=messaging>

 Warning: White Pages entry <cn=David Wilson,cn=White Pages,
 o=messaging> has no mhsORAddresses attribute value

 Warning: White Pages entry <cn=newp3,cn=White Pages,
 o=messaging> has no mhsORAddresses attribute value

 Error: White Pages entry <cn=test2,cn=White Pages,
 o=messaging> has an mhsORAddresses attribute value of
 /CN=bogus/C=dk/ which does not exist as a RoutedUA

 Error: White Pages entry <cn=zzzz,cn=White Pages,
 o=messaging> has an mhsORAddresses attribute value of
 /S=zzzz/O=Isode Limited/PRMD=ISODE/ADMD= /C=GB/
 which does not exist as a RoutedUA

11.4 X.400 connection troubleshooting

Configuration of X.400 connections between MTAs using P1 is documented in  M-Switch
Administration Guide.

Connection failure or success will be recorded in the MTA logs. The event logs records
provide information concerning the channel’s view of the problem. The Audit log contains
complete, if rather terse, information on the nature of the error and details of the connection
attempt made. Explanation of the values and how to change the logging is provided in
M-Switch Administration Guide.

If the connection fails, the following reasons may be given:

Troubleshooting

138M-Switch Advanced Administration Guide

../swadm/SWADM.pdf#ConnectOtherX400MTAs
../swadm/SWADM.pdf#ConnectOtherX400MTAs
../swadm/SWADM.pdf#ManagingSystem_02
../swadm/SWADM.pdf#ManagingSystem_02


Validation Failure

The remote site has either got an erroneous MTA entry in their tables, or they have no
entry for your MTA.

Unacceptable dialogue mode

This refers to the mode of RTS connection. Either the remote site does not support
monologue or the RTS ASN.1 encoding is not working.

Connect request refused on this network connection

The remote site is either down or its network listener is not running.

Busy

The remote site is busy, try again later.

Protocol Error

Protocol problems.

Remote system problem

The process at the remote site has terminated abruptly.

Timer expired

The process at the remote system is looping.

Connections are normally attempted when messages are queued for a remote X,.400 MTA.
Alternatively you can cause a connection to be attempted for test purposes using the ping
facility.

There are three ways you can do this:

• using the x400p1 command with the -p switch (see below)

• using MConsole, right-clicking on the remote x400p1 channel and selecting Test
Connection. See Section 11.5, “Testing remote X.400 connections with MConsole”.

• using the MConsole feature of opening a connection to a permanent MTA by right
clicking on a permanent MTA. Permanent MTAs are present in MConsole for any MTA
with whom the MTA has a peer connection configured. See  M-Switch Administration
Guide.

If the ping was successful, then try transmitting a proper message using an X.400 User
Agent, such as XUXA, or the example X.400 API programs supplied with the product.
The binaries are in $(BINDIR) and the source code is in $(SHAREDIR)/x400sdk/example.
If during transmission a protocol error is received then this needs to be resolved. To analyse
this problem, it may be necessary to obtain the required X.400 information by turning up
the RTS, session, and transport logging. How to do this using MConsole is described in
M-Switch Administration Guide. If you are not using MConsole to set up the MTA
configuration, follow the procedure described in the M-Switch Advanced Administration
Guide to modify the logging configuration.

Don't forget to reset the logging levels after the problem has been investigated.

In addition, or alternatively, the x400p1 channel can be run in debug mode. In this mode
the user has to act as the qmgr in the protocol exchanges. The form of the command line
is:

x400p1 debug [-c <channel>]

where

debug

Starts the channel in debug mode.

The other options are as described in the M-Switch Advanced Administration Guide. The
channel would normally be started with a command line like:

Troubleshooting

139M-Switch Advanced Administration Guide

#OperatorTools_01_02
#OperatorTools_01_02
../swadm/SWADM.pdf#ManagingSystem_02
../swadm/SWADM.pdf#ManagingSystem_02


x400p1 debug -c x400p1

You then need to interact with the channel acting as a proxy for the qmgr. In order to send
a message, the following sequence interchange occurs:

{
   channelStart
}
{
   channel "x400p1",
   maxinst 1,
   appltype 2,
   flags 7,
   status 2000000
}
Operations:
        Message Success Timeout ProtocolError  AuthenticationError 
        Congested Start Connect Disconnect Abort
        Accepted Rejected Pause Resume Closedown
Operation (unique prefix): success
Data: 
Instance [1]: 
Request [0]: 
{
   channelRequest
}
{
   instance 1,
   request 1,
   timelimit -1,
   priolimit 8
}
Operations:
        Message Success Timeout ProtocolError  AuthenticationError 
        Congested Start Connect Disconnect Abort
        Accepted Rejected Pause Resume Closedown
Operation (unique prefix): connect
Data: cn=x400p1,cn=attlee-sink1,cn=Messaging Configuration,ou=MHS,c=GB
Instance [1]: 
Request [0]: 
Pinging cn=x400p1,cn=attlee-sink1,cn=Messaging Configuration,ou=MHS,
c=GB
Connected Successfully to cn=x400p1,cn=attlee-sink1,cn=Messaging 
Configuration,ou=MHS,c=GB
{
   channelStatus
}
{
   instance 1,
   request 2,
   context 1,
   status 2000000
}
Operations:
        Message Success Timeout ProtocolError  AuthenticationError 
        Congested Start Connect Disconnect Abort
        Accepted Rejected Pause Resume Closedown
Operation (unique prefix): message
MessageID: msg.11965-0
Enter recipient number, one per line:
        > 1
        > 
{
   messageStatus

Troubleshooting

140M-Switch Advanced Administration Guide



}
{
   instance 1,
   request 1,
   rdone 1,
   sdone 839,
   recips {
      RecipInfo {
         rno 1,
         opstatus 1,
         status 0
      }
   },
   newrequest 3,
   timelimit -1,
   priolimit 7
}
Operations:
        Message Success Timeout ProtocolError  AuthenticationError 
        Congested Start Connect Disconnect Abort
        Accepted Rejected Pause Resume Closedown
Operation (unique prefix): disconnect
Data: 
Instance [1]: 
Request [0]: 
Operations:
        Message Success Timeout ProtocolError  AuthenticationError 
        Congested Start Connect Disconnect Abort
        Accepted Rejected Pause Resume Closedown
Operation (unique prefix): closedown
Data: 
Instance [1]: 
Request [0]: 

The commands entered by the operator are in bold. They are

success
connect
   data <mtaname>
message

<msgid>

<recipnum>

disconnnect
closedown

11.4.1 How to test an X.400 connection

Use the x400p1 channel in ping mode to attempt to connect to a remote MTA. The command
line would take the form:

x400p1 ping|-p -a<addr>|-m<mtaname> [-c<channel>]

Either -a or -m should be used to specify the connection to be tried. The option meanings
are as follows:

-p

Start the channel in ping mode, which means attempt to connect to a remote MTA and
exit, reporting on success or failure. ping or -p may be specified.

-a<addr>

The value specified should be an OR-address. The channel connects to the MTA to
which a message addressed to this recipient would be relayed.

Troubleshooting

141M-Switch Advanced Administration Guide



-c<channel>

Claim to be the given channel name, <channel>, on input. If this option is not set, the
channel used is that found by a lookup of the program name as a channel.

-m<mtaname>

If you have configured Directory based routing, this is the Distinguished Name of the
MTA which is read to obtain the connection information. If you are using table based
routing, it is the name used as key into the outbound channel table.

The following command line examples starts the x400p1 channel in ping mode to test that
a remote MTA can be reached.

If the addressing information is held in the Directory, the channel can be started in ping
mode specifying either the Distinguished Name of the MTA entry as the value of <mtaname>,
as in

x400p1 -p -m"<cn=Remote MTA,ou=server,o=Myorg Corp,c=US>" -cx400p1

or the OR-address to be used for routing to the remote MTA as the value of <addr> in the
-a option, as in the example

x400p1 -p -a "/I=D/S=Smith/O=Myorg/ADMD=Sprint/C=US/" -cx400p1

11.5 Testing remote X.400 connections with
MConsole

The easiest way to check X.400 connections, is using the Test Connection from this MTA
feature of MConsole.

To do this, select the remote MTA you want to test the connection to (the responder MTA),
expand the Channel folder, and select the x400p1 channel. Right click, and select Test
Connection from this MTA. A window is displayed, giving you the choice of selecting
the MTA you are going to test the connection from (the initiator MTA). In order to perform
this test, you will need to contact the SOM daemon of the initiator MTA, so you'll need
the user name and password. This is the same that you use for MConsole. After you have
authenticated successfully, you can click the Test button at the bottom of the window.

Note: The M-Switch event log records the information reported below. The
M-Switch audit logs also record all attempted connections.

Below are some common connection errors, their likely cause and how to fix them.

11.5.1 Cannot connect to remote MTA

This error message means that it wasn't possible to establish a connection to the remote
MTA.

Connection from voshod.isode.net to sumo.isode.net failed: Command 
failed (connect request refused on this network connection)

This could be because:

Troubleshooting

142M-Switch Advanced Administration Guide



• The remote MTA is not running. If you can, check that the process is running normally,
and if its a Isode MTA, that IAED is running. If it is not under your control, ask the
administrator of the other MTA to check it for you.

• The remote MTA is running, but there's a firewall that prevents connecting to port 102
(the default OSI port).

• You have incorrectly configured the remote MTA Presentation Address

A simple way to establish that there is network connectivity is to use the telnet program.
To check that you can connect from host.example.com to port 102 on
remote.example.com. You can use:

telnet remote.example.com 102

If you get this message:

telnet: Unable to connect to remote host: Connection refused

then either IAED is not running on the remote host, or there is a firewall blocking access
to port 102. In Linux, check that IP tables is correctly configured in the remote host. Similar
checks applies for Windows firewalls.

If it works, you should see a message similar to this:

Connected to remote.example.com

11.5.2 Incoming X.400 Connections

The first thing you should check is that you have connectivity.

Start the Isode MTA software, check that logging is being written in $LOGDIR
(/var/isode/logs or C:\Isode\log) and then ask the administrator of the remote MTA to run
the telnet command:

telnet <your-IP-address> 102

If there is IP connectivity, no firewalls stopping connections to port 102, and your software
is running and correctly configured, then the administrator of the remote MTA should see
something like this:

Trying 192.168.0.20...
Connected to spec.isode.net.
Escape character is '^]'.

Ask the administrator to type the word "test" and then close the connection with Ctrl-D.

As the word "test" is an invalid command to issue, you should see this in the mta-event.log
(or iaed.log in case you have split logging).

iaed 14015 (root) F-Tsap-BadITOTversion Bad ITOT version number 116

If this is not happening, then check that they can, for example, ping or ssh to your machine.

You may also want to check that isode.iaed is listening on the TSAP port (TSAP == 102).
Try

Troubleshooting

143M-Switch Advanced Administration Guide



netstat -a | grep tsap

you should see something like this:

tcp 0 0 spec.isode.net:iso-tsap 0.0.0.0:*   LISTEN

11.5.3 Authentication errors

The MTA that initiates the connection is being rejected by the responding MTA. This error
message could mean two things:

Testing connection to sumo.isode.net....
Connection from voshod.isode.net to sumo.isode.net failed: Command 
failed (validation failure)

• A connection to the remote MTA was established, but they rejected our authentication
information.

• A connection to the remote MTA was established, but we rejected their authentication
information.

To find out which one is the case, you can examine the mta-event log and mta-audit logs:

• If we reject their authentication information, the mta-event log will explain the error in
more detail.

• If they reject our authentication information, the mta-event log will simply report
authentication error.

11.5.4 Remote MTA not found in our configuration

A responding MTA relies on the MTA Name supplied in the P1 bind to look up the remote
Initiator and check the authentication information. An incoming connection is rejected if
it cannot find it in its configuration.

Check that the MTA that is trying to connect is correctly configured in your system. Then
generate the MTA Links of your MTA's x400p1 channel in MConsole by right clicking
on the Message Transfer Agents folder then selecting Create MTA Links.

11.6 Troubleshooting P3 connections

When you create an X.400 P7 Message Store user with MConsole, by default it sets the
PP Channel to p3deliver. This is because the MTA will deliver the message to the
Message Store via P3. As message is delivered, then its no longer on the Queue, its in the
Message Store.

Now, if you don't want to use an X.400 P7 Message Store, what you do is to create X.400
P3 users in MConsole that have the PP Channel set to p3server. This means that when
a message arrives to this user, it will be put in the p3server channel. You can then see it
in the Queue using Mconsole. Until you connect to the p3server channel as the user, the
message won't be delivered to you.

The XUXA X.400 User Agent program, when correctly configured to use X.400 P3, will
read (i.e. deliver) all the messages that are ready to be delivered to the X.400 P3 user.

Troubleshooting

144M-Switch Advanced Administration Guide



You should to note that our sample command line User Agent programs (both the Tcl and
C sample receive programs) connect to read just one message.

This means that when they finished reading one message, they just quit. If the MTA has
more than one message in the p3server channel for that user, it will try to deliver the
second message, but the UAs are not prepared to receive it, and so the delivery of the
second message fails. Because of this failure, the MTA puts a delay on the p3server
channel. So that's why you connect again to read messages, and they are not delivered to
your UA, even though they are on the queue.

If this happens, you can do three things:

1. Make sure that your P3 User Agent programs always check to see if there are more
messages waiting before quitting or closing the p3server channel connection. (This is
the preferred option, long time)

2. Clear the delay in the p3server channel with MConsole (with Clear Delay or
Downwards force attempt). This is good for testing only.

3. Restart the server, as this will clear the delay. This is far too drastic, no need to do it
this way.

If you open the connection to the p3server channel, the MTA will issue a message delivery
operation. If you quit without reading the message, the delivery fill fail.

If you look at the Queue using MConsole, you will find that the message is not gone. This
is because the MTA Delivery to the UA fails, the message is marked not available as it is
delayed. So when you connect again, there's one message less available for reading. When
the delay is cleared, it will be available again.

11.7 Basic Message Tracking

This section gives some tips to evaluators on what to do if you sent a message but cannot
see it arrive.

1. In general, the best please to start is to look in the logs: (/var/isode/log or
C:\Isode\log). The most likely files that will show useful information are
mta-event.logand xms-event.log. If the message was indeed received it should
be shown in mta-audit.log and xms-audit.log.

2. The message may have been sent, but not delivered, for example, because of the sample
latest delivery time was exceeded. Check if you set the latest delivery time value in the
example. In any case, the sender should have received a delivery report.

3. The message is stuck in the queue, for whatever reason. In this case, you'll find a directory
called msg.XXXXX-N under /var/isode/switch (C:\Isode\switch). You can also
see this message and under which channel it is with the MConsole tool
(/opt/isode/bin/mconsole or the MConsole Windows shortcut).

4. Finally, the message may have been delivered, but you cannot see it. In this case, you'll
see new messages being delivered with either MConsole X.400 Message Store Operations
View, or by looking at the recipient user's mailbox, which is usually under
/var/isode/mailboxes/ or C:\Isode\bin.

If you still cannot find what happened to your message, send the log files, together with a
short description of who you are sending from and to to support@isode.com.

Troubleshooting

145M-Switch Advanced Administration Guide



Of course, if you have already set up the Message Audit Database, it would be much easier
to track the message by using any of the MConsole views under Audit Information (Message
History, Message Tracking and Message Transfers History).

11.8 Preventing messages from being deleted

You can prevent messages from being deleted from the M-Switch queue by setting the No
delete option of the MTA. You can do this by using MConsole.

Select your local MTA in the Switch Configurations View, select the Advanced tab. In
it you'll find the option No delete, with a check box that can be set.

Then the message will be in the queue /var/isode/switch or C:/Isode/switch in a directory
called something like msg.12345–0

Bear in mind that, as with other settings configured by MConsole, it may take some time
for the QMGR to spot the change, and to write it in the mtatailor.tai file.

11.9 M-Switch X.400 Logging

To increase the logging generated when you test an X.400 connection from MConsole, for
a you should do this:

1. In MConsole, expand your local MTA, and the Logs folder under it. Select the Eventlog,
right click and choose New Program-specific Stream. Select x400p1 and click on OK.
Expand the Eventlog node.

2. Select the x400p1 entry, enter x400p1.log in the Log file Name field, select the Audit
and Event logging tab. In the Events section click on the Advanced... button. Select
the MTA_X400 row and click on the Edit button, and then check all the Facility Levels
boxes except PDU, click on OK and then on Apply.

3. Restart the QMGR. On Windows: using Isode Service Manager, stop and start
isode.pp.qmgr. On Unix, use the pp startup script (usually /etc/init.d/pp) to stop and
start the whole MTA.

4. Try testing the connection again, using the Test Connection from this MTA option
on your MTA's x400p1 channel.

5. You should see a new log file called x400p1.log under your log directory (/var/isode/log
or C:\Isode\log).

11.10 Messaging System Checks

11.10.1 Overview

MConsole provides a way to run some checks that report on the DNS configuration of
Internet domains, which can be your own domain or an external domain.

Troubleshooting

146M-Switch Advanced Administration Guide



This tool can be useful to establish if the locally configured SMTP server has been set up
to use all of the security settings that Isode M-Switch supports.

The tool is not able to modify your Isode M-Switch configuration or the DNS settings, but
it can be useful in determining which features are configured and what are the DNS values.

It can also be useful to determine what is the configuration of an external MTA, by looking
at the information available in DNS about a third-party domain.

11.10.2 Running the DNS System Check

To run the System Check, open the Switch Configuration View then select the menu
Messaging → System Check.

To report on the configuration of a domain you have two options: you can select one of
your local domains from the Check local domains combo, or you can manually enter a
domain in the Check this domain box.

Once a domain has been provided (either selected from the Combo box or manually typed),
the Check button will be enabled. To run the report, click on the Check button. The action
will make MConsole perform a number of DNS searches and report the result in the HTML
browser shown below.

The figure below shows a sample report generated for the domain isode.com.

There are currently five areas that are reported: MX Records, SPF, DKIM, STS and
DMARC.

If a feature is configured in DNS, the information available will be shown. For example,
in the image above, the SPF feature is configured, and the value is v=spf1 mx ~all.

If a feature is not configured in DNS, for example, there are no records for STS, then the
report will include the line: >>> Doesn't have STS Records

M-Switch does use A records if the MX lookup for a domain returns no values. In this
case, if the lookup of the domain as a A record is successful, the returned value is used to
connect. The DNS system check feature does not currently check the A records for the
domain.

11.10.3 References

• MX

Summary: The MX (mail exchange) records

RFC Reference: RFC 1912

RFC Link: https://tools.ietf.org/html/rfc1912

Example: isode.com. 86400 IN MX 1 waldorf.isode.com.

• SPF

Summary: Sender Policy Framework (SPF) for Authorizing Use of Domains in Email

RFC Reference: RFC 7208

RFC Link: https://datatracker.ietf.org/doc/rfc7208/

Example: v=spf1 include:_spf.google.com ~all

• DKIM

Summary: DomainKeys Identified Mail (DKIM) Signatures

Troubleshooting

147M-Switch Advanced Administration Guide

https://tools.ietf.org/html/rfc1912
https://datatracker.ietf.org/doc/rfc7208/


RFC Reference: RFC 6376

RFC Link: https://datatracker.ietf.org/doc/rfc6376/

• STS

Summary: SMTP MTA Strict Transport Security / SMTP TLS Reporting

RFC Reference: RFC 8460, RFC 8461

RFC Link 1: https://datatracker.ietf.org/doc/rfc8461/

RFC Link 2: https://datatracker.ietf.org/doc/rfc8460/

Example: v=STSv1; id=20171114T070707;

• DMARC

Summary: Domain-based Message Authentication, Reporting, and Conformance

RFC Reference: RFC 7489

RFC Link: https://datatracker.ietf.org/doc/rfc7489/

Example: v=DMARC1; p=reject; rua=mailto:mailauth-reports@google.com

Troubleshooting

148M-Switch Advanced Administration Guide

https://datatracker.ietf.org/doc/rfc6376/
https://datatracker.ietf.org/doc/rfc8461/
https://datatracker.ietf.org/doc/rfc8460/
https://datatracker.ietf.org/doc/rfc7489/


Chapter 12 Tips
This sections provides tips on how to configure M-Switch in unusual ways.

12.1 Installing the software on non-standard
paths

On Windows, it is possible to select the path where the software is installed by changing
the default value suggested by the Windows installer.

On Unix, the easiest way to make the servers use non-standard paths is to use symbolic
links. So install the packages and accept the default locations.

Say that you want to use /mnt/isode instead of /var/isode for all the usual directories. Then
you should:

• Stop all the services (if they are already running)

service pumice stop; service pp stop ; service dsa stop

• Copy the existing directories

cp -pr /var/isode/* /mnt/isode *

• Move the /var/isode directory out of the way

mv /var/isode /var/isode-old

• Set up the symbolic links

ln -s /mnt/isode/archive /var/isode/archive
ln -s /mnt/isode/dsa-db /var/isode/dsa-db
ln -s /mnt/isode/log /var/isode/log
ln -s /mnt/isode/mailboxes /var/isode/mailboxes
ln -s /mnt/isode/switch /var/isode/switch
ln -s /mnt/isode/tmp /var/isode/tmp

• Make sure that everything is OK, and then start the services

service dsa start; service pp start; service pumice start

• When everything is working fine, remove the /var/isode-old directory

rm -fr /var/isode-old

Tips

149M-Switch Advanced Administration Guide



12.2 How can set a limit on the size of a
message?

There are several ways to set a limit to a message size.

12.2.1 Setting a per-channel maximum message size

You can configure a maximum message size by using the MTA Authorization mechanism.
You can impose a size limit on a channel, (let's say p3deliver or x400p1), and all messages
that exceed that size will get a DR (Delivery Report).

In MConsole, edit your local MTA and select the Authorization tab. To add a new Rule,
click on the Add button. Give the new Rule a description, for example "P3 message
size limit". Select the Type as block and in the Filter value enter, for example:

(&(size>1000000)(outchan=p3server))

Click on OK and then Apply.

12.2.2 Setting a per-user maximum message size

You can also set the size on a per user basis, again using authorization, but even though
this is very flexible, it requires you to keep it up to date manually, that is, after creating a
user with MConsole, you need to enter it's authorization entry in the table (again using
MConsole).

12.2.3 Preventing the submission of large messages

The other option would be to limit the submission of the message from the UA size. The
X.400 Demo User Agent (XUXA) uses a Directory based Address Book, and one of the
optional attributes that users in the DSA can have is mhsDeliverableContentLength.
If that attribute is present, and the message size the UA tries to submit is bigger, it won't
do it and inform the user.

Of course, this is only half of the story, as messages can come to the MTA via say P1. You
can put a limit there (using channel authorization).

In the future we will make the MTA check the user's DSA entry, and read the
mhsDeliverableContentLength, but this work hasn't been planned yet.

12.3 Use of iaed in Table-based Configurations

Inbound X.400 P1 and P3 connections (for message transfer in or submission) are initially
handled by iaed. This then starts the appropriate responder channel for the called Presentation
Address (e.g. x400p1 for incoming X.400 P1 connections).

In a normal M-Switch installation, iaed obtains information about the set of Presentation
Addresses to listen on, and the corresponding responder channels by searching the Directory.
In a table-based configuration, iaed instead obtains this information from the

Tips

150M-Switch Advanced Administration Guide



(ETCDIR)/isoservices file. In this case it is referred to as running in tsapd mode (this was
the original name of a separate application which ran in table-only mode).

A suitable entry for X.400 P1 connections might be:

 "tsap/p1" "591" /opt/isode/libexec/x400p1

In this example, the service name is tsap/p1, the transport selector is "591" and
/opt/isode/libexec/x400p1 indicates the location of the X.400 P1 channel program
(and any arguments). If inbound X.400(84) messages are expected, use a numeric IA5 form
for the transport selector.

Note:  Normally, isode.iaed operates in "iaed mode" (i.e. using the Directory)
when there is a loc_mtadnname key in the mtatailor file, and in "tsapd mode"
when there is no such key present. You may override this behaviour, and force
isode.iaed to operate in tsapd mode by starting it with the -F command line
argument.

12.4 Non-standard Use of the X.400 Channel

The X.400 P1 channel can be run in a number of non-standard ways from the command
line to perform specific functions, as described below.

12.4.1 Starting the X.400 Channel from the command line to
pull messages

This option might be used to retrieve messages from a remote MTA that can only be
contacted intermittently.

The following options may be included on the command line, and will override any
corresponding values specified in the channel configuration:

x400p1 -Ip -m<mtaname> [-te|d] [-r|-s] [-f<logname>] [-n]
      [-c<channel>] 

-Ip

Start as initiator to pull messages. This value is mandatory.

-m <mtaname>

This value is mandatory. In a Directory based configuration, mtaname will be the
Distinguished Name of the MTA which is read to obtain the connection information.
In table based configurations, it is the name used as a key into the channel table.

-t <suboption>

The value of suboption can be either e, to enable or d, to disable two way alternate
mode on all connections. In table based configurations, if a value is given here it will
override the value of the mode field in the channel table.

-r
Disable use of checkpointing and recovery facilities. If this option is not specified, the
channel will attempt to resume the transfer of a previously aborted message.

Tips

151M-Switch Advanced Administration Guide



-s
Enable saving of checkpoint data as the message transfer proceeds. The -s flag provides
additional protection in the case of a system crash, as the necessary checkpoint data
will always be saved.

Caution: Associations which fail while the initiator is receiving a message
cannot be recovered.

-f <logname>

Send logging to the file specified by logname. By default, the program name x400p1
is used.

-n

Use 1988 stack (default).

-c <channel>

Claim to be the channel, channel. By default the channel is assumed to be the name
of the program itself.

The following command line might be used to start the X.400 channel in a Directory based
configuration to pull messages:

x400p1 -Ip -c x400p1 -m "cn=garfield, o=widget ltd, c=gb"

cn=garfield, o=widget ltd, c=gb is the Distinguished Name of the MTA which
is read to obtain the connection information.

The following example illustrates a command line for a table based configuration, where
the channel table holds the information required to connect to the MTA called
x400.headquarters.net:

x400p1 -Ip -c x400p1 -m x400.headquarters.net

12.4.2 Starting the X.400 channel from the command line to
recover a failed message

Note: This option is not currently supported.

The channel can be invoked from command line to recover from a failure which occurred
when the initiator was receiving a message. The following command line options can be
set:

x400p1 -Ir -m<mtaname> [-te|d] [-r|-s] [-f<logname>] [-n] 
      [-c<channel>] 

-Ir

Start as initiator to recover inbound failures. This value is mandatory. The other options
are as described in Section 12.4.1, “Starting the X.400 Channel from the command
line to pull messages”.

12.4.3 Starting the X.400 channel as a static responder

The X.400 channel can be run as a static responder, which may be useful for test purposes.
In this mode, the x400p1 channel program takes note of the ininfo field of the channel
configuration. This field can be found in the x400p1 Channel Properties/Program window.
If this is set to the value sloppy, no checking of MTA name and password is done for any
inbound connection on that channel.

Tips

152M-Switch Advanced Administration Guide



The following options can be included in the startup command:

x400p1 [-R] [-te|d] [-r|-s] [-f<logname>] [-o|-n] [-c<channel>]
      [-l<addr>]

-R

Start as a responder (the default).

-o

Use the old 1984 compatible stack.

-c <channel>

Claim to be the given channel name on input. You may have a number of X.400
channels, selected initially by T-Selector or network address. If you wish to split up
traffic in this way, possibly for authorization reasons, you should set the channel name
in the isoservices file. By default the channel is assumed to be the name of the program
itself.

A better way to split traffic would be to use channel pairing, i.e. separate channels
could be configured to handle inbound and outbound traffic. The channel key field
could be used to identify the inbound or outbound channel. For example, the inbound
channel for communicating with a specific MTA (site3) could be configured with the
following values:

name=X.400site3
     program=x400p1x400p1
     key=X.400in88

while the outbound channel could be configured with the values:

name=X.400site3
     program=x400p1
     key=X.400out88

-l <addr>

Use the presentation address, <addr>, to listen for incoming connections, and spawn
a child process to handle the connection. Note, this option can only be used when the
channel is started from the command line, i.e. not being run from the tsapd or iaed.

The other options are as described in Section 12.4.1, “Starting the X.400 Channel from the
command line to pull messages”.

Tips

153M-Switch Advanced Administration Guide



Chapter 13 Audit Database
This section covers in detail the Audit Database, in particular the Audit Records and Keys
that appear in the Audit Logs, and whether they are used in the Audit Database Schema.

13.1 Audit Database Records

13.1.1 Generic Message Logging

13.1.1.1 Audit DB Record: Msgin

Msgin records hold per-message information on submission or transfer-in.

Table 13.1. Audit DB Record: Msgin

DBDescriptionKey

YThe channel associated with the action.chan

YThe message content type.content-type

YThe deferred delivery time set in the message.deferred-time

YThe value of the Disposition-Notification-To field in an Internet
message.

disp-notif-to

YDate Time Group string in ACP 121 format.dtg

YThe SMTP ENVID extension associated with the message.envid

YMMHS Expiry Date Indication.expires

YMMHS Content Type.mmhs-type

YInternet message ID.msgid

YAssociated MTA information.mta

YNumber of envelope recipient.nrecip

YNumber of reported recipient.nreprecip

Noriginator-error

YOriginal sender address.orig-sender

YX.400 MTS Identifier.p1msgid

YMessage priority (as internal value).priority

YID for message in queue.qid

YTime the message was entered in the local queue.queued-time

YSender (originator) address.sender

YList of Subject Information Codes.sics

YSize of message content.size

YSubject stringsubject

YMTS identifier of subject message.subjectmsgid

YSubject-trace-information from report content.subjecttrace

YDate/time message was submitted.submit-time

YMessage subtype: report type for multipart/report.subtype

YTrace information from envelope.trace

Audit Database

154M-Switch Advanced Administration Guide



DBDescriptionKey

YMessage Type.type

YUnique Identifier.unid

13.1.1.2 Audit DB Record: ok, resubmit, redirect

• ok: Indicates acceptance of a recipient on submission or transfer in.

• Resubmit: Results of recalculating the routing for a recipient.

• Redirect: An operator initiated redirection for a recipient.

Table 13.2. Audit DB Record: ok, resubmit, redirect

DBDescriptionKey

YA string giving information from the authorization process.auth

YThe channel associated with the action.chan

YThe recipient’s Directory Name.dn

Nhold

YThe recipient address as received in protocol.in-recip

YMTA report requests.mreq

YAssociated MTA information.mta

YNotification requests.nreq

YOriginal recipient address.orig-recip

YID for message in queue.qid

YRecipient address.recip

YInternal recipient number.rno

YUnique Identifier.unid

YUser specified report requests.ureq

YEnvelope recipient number.xno

13.1.1.3 Audit DB Record: rrecip-pos, rrecip-neg

These records contain delivery or non-delivery information for a reported-recipient from
an X.400 Report.

Table 13.3. Audit DB Record: rrecip-pos, rrecip-neg

DBDescriptionKey

YThe time of subject message arrival.arrival-time

YThe delivery time reported in an X.400 Report for the subject
message.

del-time (pos
only)

YThe type of user for an X.400 Reported recipientdel-type (pos
only)

YA string reporting the diagnostic for non-delivery.diag (neg only)

YOriginally intended recipient address.origintrecip

YID for message in queue.qid

YNon delivery reason.reason (neg only)

YRecipient address.recip

YSupplementary information for acknowledgements.suppinfo

YUnique Identifier.unid

YEnvelope recipient number.xno

Audit Database

155M-Switch Advanced Administration Guide



13.1.1.4 Audit DB Record: ACDFfail

Records a failure when checking a label against a clearance. Occurs when clearance checks
are used in authorization.

Table 13.4. Audit DB Record: ACDFfail

DBDescriptionKey

YThe channel associated with the action.chan

Yerror

YAssociated MTA information.mta

NID for message in queue.qid

YMessage Type.type

YUnique Identifier.unid

13.1.1.5 Audit DB Record: Error

An error condition resulting in non-delivery for the recipient.

Table 13.5. Audit DB Record: Error

DBDescriptionKey

YThe channel associated with the action.chan

YA string reporting the diagnostic for non-delivery.diag

YAdditional information.info

YAssociated MTA information.mta

NID for message in queue.qid

Yreason

YRecipient address.recip

YInternal recipient number.rno

YStatus of operation.status

YUnique Identifier.unid

13.1.1.6 Audit DB Record: Archive

Records the archive file used to archive a message.

Table 13.6. Audit DB Record: Archive

DBDescriptionKey

YName of the archive file.file

Yindex

NID for message in queue.qid

YTransaction ID.tid

YUnique Identifier.unid

13.1.1.7 Audit DB Record: Label, Outlabel

Label and Outlabel records hold onformation about Security Label on oncoming messages
(Label) and Outgoing messages (Outlabel). NB Outlabel records are only generated if
specifically enabled.

Audit Database

156M-Switch Advanced Administration Guide



Table 13.7. Audit DB Record: Label, Outlabel

DBDescriptionKey

YThe channel associated with the action.chan

YSecurity Label CLssification.classif

Yerror

NID for message in queue.qid

NString of ACP127 form of Classification.textlabel

NTransaction ID.tid (Outlabel
only)

YUnique Identifier.unid

YWhere the security label was located.where

YValue of security label expressed in XML.xmllabel

13.1.1.8 Audit DB Record: SignVerifyOK, SignVerifyNOTOK,
SignVerifyUnknown, SignVerifyWarn

Sign records report information of message signatures.

• SignVerifyNOTOK: A failure when checking a message signature. Occurs when signature
checking is enabled in authorization.

• SignVerifyOK: A success when checking a message signature.

• SignVerifyUnknown: TBS.

• SignVerifyWarn: A warning condition when checking a message signature.

Table 13.8. Audit DB Record: Sign

DBDescriptionKey

Y==alt-name==

YThe channel associated with the action.chan

YThe issuer DN from the signing certificate.issuer

NID for message in queue.qid

YSigning Certificate’s serial number.serial

YTime message was signed.signing-time

YStatus of operation.status

YSubject stringsubject

YUnique Identifier.unid

13.1.1.9 Audit DB Record: DSN-msg

Per-message information from a DSN.

Table 13.9. Audit DB Record: DSN-msg

DBDescriptionKey

YThe time of subject message arrival in a report or DSN.arrival-time

YThe SMTP ENVID extension associated with the message.envid

YThe MTA from which the subject message was received as
reported in a DSN.

from-mta

YThe gateway MTA generating a DSN.gateway

YInternet message ID.msgid

Audit Database

157M-Switch Advanced Administration Guide



DBDescriptionKey

YAssociated MTA information.mta

YNumber of reported recipient.nreprecip

YID for message in queue.qid

YUnique Identifier.unid

13.1.1.10 Audit DB Record: DSN-recip

Per-recipient information from a DSN.

Table 13.10. Audit DB Record: DSN-recip

DBDescriptionKey

YThe event which led to the DSN being created. One of "failed"
/ "delayed" / "delivered" / "relayed" / "expanded.

action

YThe time of the last attempt (from a Warning DSN only).attempt

YA string reporting the diagnostic for non-delivery.diag

YValue of final-log-id.logid

YAssociated MTA information.mta

YOriginal recipient address.orig-recip

NID for message in queue.qid

YRecipient address.recip

YTime at which attempts will stop.retry

YStatus of operation.status

YUnique Identifier.unid

13.1.1.11 Audit DB Record: MDN

Disposition information from a MDN.

Table 13.11. Audit DB Record: MDN

DBDescriptionKey

Yaction

YThe gateway MTA generating an MDN.gateway

YInternet message ID.msgid

YOriginal recipient address.orig-recip

NID for message in queue.qid

YRecipient address.recip

YStatus of operation.status

YSupplementary information for acknowledgements.suppinfo

YUser Agent identification.ua

YUnique Identifier.unid

13.1.1.12 Audit DB Record: IPM

Information from within an X.400 IPM.

Table 13.12. Audit DB Record: IPM

DBDescriptionKey

YDate Time Group string in ACP 121 format.dtg

Audit Database

158M-Switch Advanced Administration Guide



DBDescriptionKey

Y

YMMHS Expiry Date Indication.expires

YThe DN from the IPM identifier.ipmid-dn

YThe OR-address from the IPM identifier.ipmid-ora

YThe string from the IPM identifier.ipmid-str

YMMHS Content Type.mmhs-type

NID for message in queue.qid

YSubject stringsubject

YUnique Identifier.unid

13.1.1.13 Audit DB Record: IPN

Receipt or non-receipt information from an X.400 IPN.

Table 13.13. Audit DB Record: IPN

DBDescriptionKey

YThe discard reason in an X.400 IPN.discard

YThe DN for the intended recipient field .intend-dn

YThe OR-address for the intended recipient.intend-ora

YThe DN from the subject IPM identifier.ipmid-dn

YThe OR-address from the subject IPM identifier .ipmid-ora

YThe string from the subject IPM identifier.ipmid-str

YReceipt mode.mode

YOriginator DN.orig-dn

YOriginator OR Addressorig-ora

NID for message in queue.qid

YNon-delivery reason.reason

YTime message was received.receipt-time

YIPN contains returned IPM.returned-ipm

YSupplementary information for acknowledgements.suppinfo

YUnique Identifier.unid

13.1.1.14 Audit DB Record:Trans, Deliv, Done, Quarantine, Discard

Message procecssing.

• Trans: Message transferred for recipient to another MTA.

• Deliv: Message delivered for recipient.

• Done: Recipient finished, following report/DSN generation.

• Quarantine: Message for recipient quarantined, specifying the quarantine file.

• Discard: Message discarded for recipient. No non-delivery generated.

Table 13.14. Audit DB Record:Trans, Deliv, Done, Quarantine, Discard

DBDescriptionKey

YThe time of a message transfer.action-time

YThe channel associated with the action.chan

YThe time the message was delivered.delivery-time

Audit Database

159M-Switch Advanced Administration Guide



DBDescriptionKey

YThe local reason for discarding a message.discard-reason
(Discard only)

YQuarantine filename.qfile (Quarantine
only)

NID for message in queue.qid

YDate/time message was in queue for recipient.qtime

YRecipient address.recip

YThe recipient address as received in protocol.in-recip

YOriginal recipient address.orig-recip

YIndicates positive report or DSN to be generated.report

YInternal recipient number.rno

YTransaction ID.tid

YUnique Identifier.unid

13.1.1.15 Audit DB Record: Msgout

Message transfer-out or delivery.

Table 13.15. Audit DB Record: Msgout

DBDescriptionKey

Yacp127tid

YThe channel associated with the action.chan

YAssociated MTA information.mta

YNumber of envelope recipient.nrecip

NID for message in queue.qid

YSender (originator) address.sender

YSize of message content.size

YSubject stringsubject

YTransaction ID.tid

YTime taken for transfer.ttime

YUnique Identifier.unid

13.1.2 Message Release

13.1.2.1 Audit DB Record: Release

Records the release of a message from quarantine.

This record is not recorded in the audit database.

Table 13.16. Audit DB Record: Release

DBDescriptionKey

ID for message in queue.qid

Recipient address.recip

Internal recipient number.rno

Unique Identifier.unid

Audit Database

160M-Switch Advanced Administration Guide



13.1.3 Badmsg from ACP127, ACP142, P1

13.1.3.1 Audit DB Record: Badmsg

Indicates that data was received by the inbound channel which could not be interpreted as
a message.

This record is not recorded in the audit database.

Table 13.17. Audit DB Record: Badmsg

DBDescriptionKey

ACP127 circuit nameacp127circ

The channel associated with the action.chan

Name of the dead letter file.file

Associated MTA information.mta

String giving the reason the message was regarded as bad.reason

Message Type.type

13.1.4 P1 Connections

13.1.4.1 Audit DB Record: P1InitConnOK, P1InitConnFail,
P1RespConnOK, P1RespConnFail

P1 connections records, initiator and responder, inbound and outbound, successes and
failures.

Table 13.18. Audit DB Record: P1InitConnOK, P1InitConnFail, P1RespConnOK,
P1RespConnFail

DBDescriptionKey

YActivity ID of previous association.actid

YActivity number.actno

YApplication context (0 = 84; 1 = X.410; 2 = Normal).appcon

YTheir authentication requirements.auth_req

Ystrong or simple.bindtype

YThe channel in use.chan

YRTSE checkpoint size.ckpoint

YTWA or monologue.dialogmode

YReason for a P1 connection failure.fail_reason

YOur authentication requirements.our_auth_req

YThe issuer DN of the local signing certificate.ourissuer

YThe local MTA’s MTAname used in the bind.ourmtaname

YThe local channel’s presentation address.ourpa

YLocal global domain identifier.oursangdi

YLocal MTAname.oursanmta

YIssuer of local signing certificate.ourserial_num

YSubject of local signing certificate.oursubject

YAssociation being recovered.recov

YKey for message on recovery.res_msgkey

YLength of message being transferred on recovery.res_p1len

Audit Database

161M-Switch Advanced Administration Guide



DBDescriptionKey

YMessage priority on recovery.res_priority

YThe RTSE type for the connection.rtse_type

YInternal RTS flags.rts_flags

YRTS identifier.rtsid

YThe peer’s DN from the AET.theiraet

YThe peer’s address used for the connection.their_calling_addr

YThe issuer DN of peer's signing certificate.theirissuer

YThe peer’s MTAname.theirmtaname

YThe peer’s presentation address.theirpa

YPeer’s global domain identifier.theirsangdi

YPeer’s MTAname.theirsanmta

YSerial number of peer’s signing certificate.theirserial_num

YSubject of peer’s signing certificate.theirsubject

YGDI in token.tokengdi

YMTAname in token.tokenmta

YRTSE window size.window

13.1.4.2 Audit DB Record: P1InitDiscOK, P1InitAbort, P1InitReject,
P1Unknown, P1RespDiscOK, P1RespAbort

P1 disconnection records, initiator and responder, inbound and outbound, successes and
failures.

Table 13.19. Audit DB Record: P1InitDiscOK, P1InitAbort, P1InitReject,
P1Unknown, P1RespDiscOK, P1RespAbort

DBDescriptionKey

Ystrong or simple.bindtype

YThe channel in use.chan

YData transfer amount.datatrans

YDisconnect status.discstatus

YReason for a P1 connection failure.fail_reason

YThe issuer DN of the local signing certificate.ourissuer

YThe local MTA’s MTAname used in the bind.ourmtaname

YThe local channel’s presentation address.ourpa

YLocal global domain identifier.oursangdi

YLocal MTAname.oursanmta

YIssuer of local signing certificate.ourserial_num

YSubject of local signing certificate.oursubject

YDisconnect reason from RTSE.rta_reason

YStrong authentication failure reason.sa_fail_reason

YRTS ack number.sn_ack

YRTS session serial number.sn_sent

YThe issuer DN of peer's signing certificate.theirissuer

YThe peer’s MTAname.theirmtaname

YThe peer’s presentation address.theirpa

Audit Database

162M-Switch Advanced Administration Guide



DBDescriptionKey

YPeer’s global domain identifier.theirsangdi

YPeer’s MTAname.theirsanmta

YSerial number of peer’s signing certificate.theirserial_num

YSubject of peer’s signing certificate.theirsubject

YGDI in token.tokengdi

YMTAname in token.tokenmta

13.1.5 P3 Connections

13.1.5.1 Audit DB Record: P3InitConnOK, P3InitConnFail,
P3RespConnOK, P3RespConnFail

P3 connection records, initiator and responder, inbound and outbound, successes and
failures.

Table 13.20. Audit DB Record: P3InitConnOK, P3InitConnFail, P3RespConnOK,
P3RespConnFail

DBDescriptionKey

YCalling O/R address.addr

Nadmin

YThe channel in use.chan

YCalling Directory Name.dn

YReason for a P3 connection failure.fail_reason

YBi-directional connection.twa

YMessage Type.type

13.1.5.2 Audit DB Record: P3InitDiscOK, P3InitAbort, P3RespDiskOK,
P3RespAbort

P3 disconnection records, initiator and responder, inbound and outbound, successes and
failures.

Table 13.21. Audit DB Record: P3Other

DBDescriptionKey

YCalling O/R address.addr

YThe channel in use.chan

YDisconnect status.discstatus

YCalling Directory Name.dn

YMessage Type.type

13.1.5.3 Audit DB Record: P3ConnectFrom

Reports when an inbound P3 protocol connection is received.

This record is not recorded in the audit database.

Table 13.22. Audit DB Record: P3ConnectFrom

DBDescriptionKey

Channel name.chan

The calling Presentation Address.calling_addr

Audit Database

163M-Switch Advanced Administration Guide



DBDescriptionKey

The Presentation Address of the channel.ourpa

13.1.6 ACP127

13.1.6.1 Audit DB Record: ACP127addrMapFail

This record is not recorded in the audit database

Table 13.23. Audit DB Record: ACP127addrMapFail

DBDescriptionKey

This is the channel designator associated with the peeracp127chan

Station serial Numberacp127id

ACP127 Transmission Sequence Numberacp127tsn

The channel associated with the action.chan

Originating PLAorigPla

Originating Routing IndicatororigRi

Replacement Addressreplacement

13.1.6.2 Audit DB Record: ACP127Fill

This record is not recorded in the audit database

Table 13.24. Audit DB Record: ACP127Fill

DBDescriptionKey

This is the channel designator associated with the peeracp127chan

ACP127 circuit nameacp127circ

Action string (e.g. fillsend)action

The channel associated with the action.chan

Station RIstation

13.1.6.3 Audit DB Record: ACP127Recap

This record is not recorded in the audit database

Table 13.25. Audit DB Record: ACP127Recap

DBDescriptionKey

This is the channel designator associated with the peeracp127chan

ACP127 circuit nameacp127circ

action string (e.g. recapsend)action

The channel associated with the action.chan

count

Date Time fromfrom

Associated MTA information.mta

Internal recipient number.rno

RI of the stationstation

Date Time toto

Audit Database

164M-Switch Advanced Administration Guide



13.1.6.4 Audit DB Record: ACP127Silence

This record is not recorded in the audit database

Table 13.26. Audit DB Record: ACP127Silence

DBDescriptionKey

This is the channel designator associated with the peeracp127chan

ACP127 circuit nameacp127circ

The channel associated with the action.chan

Station RIstation

13.1.6.5 Audit DB Record: ACP127out

Table 13.27. Audit DB Record: ACP127out

DBDescriptionKey

YThis is the channel designator associated with the peeracp127chan

NACP127 circuit nameacp127circ

YStation serial Numberacp127id

YRetransmission ID of the messageacp127rerunid

NThis is the segment id to identify a message segment when a
long message is segmented

acp127segno

YThis is used to correlate acp127out records with msgout recordsacp127tid

NThe total number of message segments of original messageacp127totalseg

YACP127 Transmission Sequence Numberacp127tsn

YThe addresses the message is actioned toaction

YThe channel associated with the message.chan

YDate Time Group string in ACP 121 format.dtg

YThe addresses the message is sent as an informationinfo

YMMHS Content Type.mmhs-type

YAssociated MTA information.mta

YParamaters associated with operating signalopparam

YOperating signal codeopsig

YOriginating PLAorig-pla

YDetermines if the record belongs to a service messageservice

YSubject stringsubject

YUnique Identifier.unid

13.1.6.6 Audit DB Record: ACP127Rejected

This record is not recorded in the audit database

Table 13.28. Audit DB Record: ACP127Rejected

DBDescriptionKey

Station serial Numberacp127id

The addresses the message is actioned toaction

The channel associated with the message.chan

Date Time Group string in ACP 121 format.dtg

The addresses the message is sent as an informationinfo

Audit Database

165M-Switch Advanced Administration Guide



DBDescriptionKey

MMHS Content Type.mmhs-type

Operating Signal Codeopsig

Originating PLAorig-pla

ID for message in queue.qid

Non-delivery reason, or reason message bad.reason

Identify a service messageservice

Subject stringsubject

Unique Identifier of message in the MTAunid

Expiry timezpw

13.1.6.7 Audit DB Record: ACP127in

Table 13.29. Audit DB Record: ACP127in

DBDescriptionKey

YThis is the channel designator associated with the peeracp127chan

NACP127 circuit nameacp127circ

YStation serial Numberacp127id

YRetransmission ID of the messageacp127rerunid

YThis is the segment id to identify a message segment when a
long message is segmented

acp127segno

YThe total number of message segments of original messageacp127totalseg

YACP127 Transmission Sequence Numberacp127tsn

YThe addresses the message is actioned toaction

YThe channel associated with the action.chan

YDate Time Group string in ACP 121 format.dtg

YThe addresses the message is sent as an informationinfo

YMMHS Content Type.mmhs-type

YAssociated MTA information.mta

YParamaters associated with operating signalopparam

YOperating signal codeopsig

YOriginating PLAorig-pla

NID for message in queue.qid

YDetermines if the record belongs to a service messageservice

YSubject stringsubject

YString associated with message submission(e.g. discarded
duplicate)

submissionMsg

YString associated with message submission type(e.g. duplicate)submissionType

NUser id who submitted the messagesubmissionUser

YUnique Identifier.unid

13.1.6.8 Audit DB Record: ACP127QueueDelete

This record is not recorded in the audit database

Audit Database

166M-Switch Advanced Administration Guide



Table 13.30. Audit DB Record: ACP127QueueDelete

DBDescriptionKey

ACP127 circuit nameacp127circ

The addresses the message is actioned toaction

The channel associated with the action.chan

Identifier number in the queue on which operation was performedentry

Associated MTA information.mta

The name of the queuequeue

User if of the person performing the actionuser

13.1.6.9 Audit DB Record: ACP127QueueAddition

This record is not recorded in the audit database

Table 13.31. Audit DB Record: ACP127QueueAddition

DBDescriptionKey

This is the channel designator associated with the peeracp127chan

ACP127 circuit nameacp127circ

Station serial Numberacp127id

ACP127 Transmission Sequence Numberacp127tsn

The addresses the message is actioned toaction

The channel associated with the action.chan

Date Time Group string in ACP 121 format.dtg

Identifier number in the queue on which operation was performedentry

Error stringerror

Information stringinfo

MMHS Content Type.mmhs-type

Associated MTA information.mta

Operating signal codeopsig

Originating PLAorig-pla

Name of the queuequeue

Determines if the record belongs to a service messageservice

Size of message content.size

Subject stringsubject

13.1.6.10 Audit DB Record: ACP127AuditEvent

This record is not recorded in the audit database

Table 13.32. Audit DB Record: ACP127AuditEvent

DBDescriptionKey

ACP127 circuit nameacp127circ

The addresses the message is actioned toaction

The channel associated with the action.chan

Associated MTA information.mta

Unique Identifier.unid

Identifier of the user associated with the operationuser

Audit Database

167M-Switch Advanced Administration Guide



13.1.6.11 Audit DB Record: ACP127Conn

This record is not recorded in the audit database

Table 13.33. Audit DB Record: ACP127Conn

DBDescriptionKey

This is the channel designator associated with the peeracp127chan

ACP127 circuit nameacp127circ

addr

The channel associated with the action.chan

connection direction(in/out)direction

Error stringerror

Associated MTA information.mta

Reason stringreason

Station RIstation

Status of operation (e.g.connectFailed)status

13.1.6.12 Audit DB Record: ACP127FlashAck

This record is not recorded in the audit database

Table 13.34. Audit DB Record: ACP127FlashAck

DBDescriptionKey

This is the channel designator associated with the peeracp127chan

ACP127 circuit nameacp127circ

The channel associated with the action.chan

direction

expected

got

Associated MTA information.mta

station

Status of operation.status

13.1.6.13 Audit DB Record: ACP127SM

This record is not recorded in the audit database

Table 13.35. Audit DB Record: ACP127SM

DBDescriptionKey

ACP127 circuit nameacp127circ

The channel associated with the action.chan

Associated MTA information.mta

parametersparams

Station RIstation

Message Type.type

User IDuser

Audit Database

168M-Switch Advanced Administration Guide



13.1.6.14 Audit DB Record: ACP127Config

This record is not recorded in the audit database

Table 13.36. Audit DB Record: ACP127Config

DBDescriptionKey

This is the channel designator associated with the peeracp127chan

ACP127 circuit nameacp127circ

The channel associated with the action.chan

String describing the modificationchange

Associated MTA information.mta

Station RIstation

User IDuser

13.1.6.15 Audit DB Record: ACP127ManualOp

This record is not recorded in the audit database

Table 13.37. Audit DB Record: ACP127ManualOp

DBDescriptionKey

This is the channel designator associated with the peeracp127chan

ACP127 circuit nameacp127circ

Associated channelchan

Associated MTA information.mta

String describing the operationoperation

Station RIstation

Unique Identifier.unid

User Identifier performing the operationuser

13.1.6.16 Audit DB Record: ACP127Monitor

This record is not recorded in the audit database

Table 13.38. Audit DB Record: ACP127Monitor

DBDescriptionKey

String describing the authorisation (e.g. full)authorisation

associated channelchan

monitor

address of peerpeeraddr

Message Type.type

User Identifierusername

13.1.7 OTAM

13.1.7.1 Audit DB Record: OTAMConn

This record is not recorded in the audit database

Audit Database

169M-Switch Advanced Administration Guide



Table 13.39. Audit DB Record: OTAMConn

DBDescriptionKey

ACP127 circuit nameacp127circ

chan

config

device

driver

Associated MTA information.mta

reason

Status of operation.status

13.1.8 SMTP

13.1.8.1 Audit DB Record: ConnectFrom

Incoming SMTP connection.

Table 13.40. Audit DB Record: ConnectFrom

DBDescriptionKey

YChannel being used.chan

Yhostname of peer.host

YIP address of peer.ip

13.1.8.2 Audit DB Record: Disconnect, Reject, BadSyntax

SMTP connection errors.

Table 13.41. Audit DB Record: Disconnect, Reject, BadSyntax

DBDescriptionKey

YChannel being used.chan

YValue sent in HELO/EHLO.helo

Yhostname of peer.host

YIP address of peer.ip

Yreason for failure.reason

13.1.8.3 Audit DB Record: BadSender, BadRecip, BadData

SMTP protocol errors.

• BadSender: Invalid sender address in MAIL command.

• BadRecip: Invalid recipient address is RCPT command.

• BadData: Invalid message content.

• BadVerify: Invalid address in VRFY command.

Table 13.42. Audit DB Record: BadSender, BadRecip, BadData

DBDescriptionKey

YAddress received.addr

YChannel being used.chan

YValue sent in HELO/EHLO.helo

Audit Database

170M-Switch Advanced Administration Guide



DBDescriptionKey

Yhostname of peer.host

YIP address of peer.ip

YReason for failure.reason

YMAIL command address.sender

13.1.8.4 Audit DB Record: AuthFail

SMTP Authentication errors SMTP AUTH failed.

Table 13.43. Audit DB Record: AuthFail

DBDescriptionKey

YChannel being used.chan

YValue sent in HELO/EHLO.helo

Yhostname of peer.host

YIP address of peer.ip

YReason for failurereason

YUserid in AUTH command.user

13.1.8.5 Audit DB Record: AuthOK

SMTP Authentication: SMTP AUTH succeeded.

Table 13.44. Audit DB Record: AuthOK

DBDescriptionKey

YAddress received.addr

YChannel being used.chan

YValue sent in HELO/EHLO.helo

Yhostname of peer.host

YIP address of peer.ip

YMechanism used for SMTP AUTH.mech

YUserid in AUTH command.user

13.1.8.6 Audit DB Record: StartTLSOK, StartTLSFail

SMTP TLS Authentication: STARTTLS failed/succeeded.

Table 13.45. Audit DB Record: StartTLSFail

DBDescriptionKey

YChannel being used.chan

YSet to “yes” if FIPS140 mode enabled.fips

YValue sent in HELO/EHLO.helo

Yhostname of peer.host

YIP address of peer.ip

YName of TLS peer.peer

13.1.8.7 Audit DB Record: Unknown

This record is not recorded in the audit database

Audit Database

171M-Switch Advanced Administration Guide



P1Unknown: Unknown connection termination.

Table 13.46. Audit DB Record: Unknown

DBDescriptionKey

chan

Value sent in HELO/EHLO.helo

host

IP address of peer.ip

13.1.9 ACP142

13.1.9.1 Audit DB Record: ACP142out

A message has been transferred out over ACP142.

Table 13.47. Audit DB Record: ACP142out

DBDescriptionKey

Ychan

Yco

Ymsid

Yndest

Ypercent

YID for message in queue.qid

YUnique Identifier.unid

13.1.9.2 Audit DB Record: ACP142in

A message has been transferred in over ACP142.

Table 13.48. Audit DB Record: ACP142in

DBDescriptionKey

Ychan

Yco

Ymsid

Yqid

Ysource

YUnique Identifier.unid

13.1.10 Checking and CCCP

13.1.10.1 Audit DB Record: Check

Records the results of checking a message. There is a record for each recipient.

Table 13.49. Audit DB Record: Check

DBDescriptionKey

Yaction

Ychan

YString containg additional information.info

YIndicates change in NOTIFY parameter in checking.notify

Audit Database

172M-Switch Advanced Administration Guide



DBDescriptionKey

Nqid

YInternal recipient number.rno

YChecking rule which applied.rule

YChecking score.score

YUnique Identifier.unid

13.1.11 Generic Service start/stop

13.1.11.1 Audit DB Record: Service

Reports a service status change.

This record is not recorded in the audit database.

Table 13.50. Audit DB Record: Service

DBDescriptionKey

name

state

version

13.1.12 Qmgr SOM

13.1.12.1 Audit DB Record: Login, Logfail, Logout

Reports login attempts on a SOM server.

This record is not recorded in the audit database.

Table 13.51. Audit DB Record: Login, Logfail, Logout

DBDescriptionKey

Address received.addr

authzid

connid

context

Mechanism used for SMTP AUTH.mech

Reason for failurereason

Userid in AUTH command.user

13.1.12.2 Audit DB Record: UserEvent

Reports SOM server events from a logged in client.

This record is not recorded in the audit database.

Table 13.52. Audit DB Record: UserEvent

DBDescriptionKey

connid

context

info

Message Type.type

Audit Database

173M-Switch Advanced Administration Guide



DBDescriptionKey

Userid in AUTH command.user

13.1.13 Profiler

13.1.13.1 Audit DB Record: ProfilerMatch

Reports profiler rules that a message matched with and the action, info and recipient
addresses for the message.

This record is not recorded in the audit database.

Table 13.53. Audit DB Record: ProfilerMatch

DBDescriptionKey

Unique Identifier.unid

ID for message in queue.qid

Channel being used.chan

Transaction ID.tid

Profiler rules the message matched with.rule

Recipient addresses.recip

Action addresses.action

Info addresses.info

13.1.13.2 Audit DB Record: ManualAction

Reports when an action was taken by the operator of the Manual Profiler and includes a
string describing the action.

This record is not recorded in the audit database.

Table 13.54. Audit DB Record: ManualAction

DBDescriptionKey

Unique Identifier.unid

ID for message in queue.qid

Channel being used.chan

Transaction ID.tid

Login name of operator who took the action.operator

String describing action taken by operator.action

Audit Database

174M-Switch Advanced Administration Guide


	M-Switch Advanced Administration Guide
	Table of Contents
	Chapter 1 Overview
	1.1 What is the Isode M-Switch?

	Chapter 2 Channel Overview
	2.1 Overview
	2.2 Channel Types
	2.3 How channels work
	2.4 Channel Pairing

	Chapter 3 Routing
	3.1 Lookup policies
	3.2 Wildcard routing
	3.2.1 Routing Filters
	3.2.2 Redirect filters
	3.2.3 Rerouting

	3.3 Redirect Filters
	3.4 Multiple Institutions on One MTA
	3.4.1 The MTA Acting As Two Different, Independent Mail Hubs
	3.4.2 The MTA and Multiple Namespaces


	Chapter 4 Table Based Configuration
	4.1 MTAs
	4.1.1 Main
	4.1.2 Delivery
	4.1.3 Routing
	4.1.4 Lookup
	4.1.5 Authorization
	4.1.6 Queue Manager
	4.1.7 Security
	4.1.7.1 TLS Configuration
	4.1.7.2 SASL Configuration

	4.1.8 Advanced (including internal variables)
	4.1.8.1 PP Internal variables
	4.1.8.2 Tailor Variables Not Configurable in Mconsole

	4.1.9 Table Entries

	4.2 Channels
	4.2.1 Main
	4.2.2 Programs
	4.2.3 Tables
	4.2.4 Inbound
	4.2.5 Auth
	4.2.6 RTSE
	4.2.7 MTA Links
	4.2.8 ACP142 In, Out and Param Tabs
	4.2.9 Advanced
	4.2.10 Channel Specific Configuration
	4.2.10.1 X.400 P1 Channel
	4.2.10.1.1 Configuring the X.400 channel for Initiator mode
	4.2.10.1.2 RTSE Tab in MConsole
	4.2.10.1.3 Strong Authentication
	4.2.10.1.3.1 Creating a CA Using Sodium CA


	4.2.10.2 ACP142 Channel
	4.2.10.3 SMTP Channel
	4.2.10.3.1 In Tab
	4.2.10.3.2 Out Tab
	4.2.10.3.3 Errors Tab
	4.2.10.3.4 Anti-Spam Tab
	4.2.10.3.5 Auth Tab
	4.2.10.3.6 SASL Mechanisms
	4.2.10.3.7 TLS Tab
	4.2.10.3.8 Greylist Tab

	4.2.10.4 LMTP Channel
	4.2.10.5 P3 Channel
	4.2.10.6 List Channel
	4.2.10.7 Checker Channel
	4.2.10.8 CCCP Channel
	4.2.10.9 Shaper Channel
	4.2.10.10 822-local Channel
	4.2.10.11 Housekeeper Channel
	4.2.10.12 FAPI Channel
	4.2.10.13 FAPI Delivery Channel
	4.2.10.14 P1 File Channel
	4.2.10.14.1 In Tab
	4.2.10.14.2 Out Tab
	4.2.10.14.3 Table Based Configuration
	4.2.10.14.4 P1File Client
	4.2.10.14.5 P1File Server

	4.2.10.15 P3 Service


	4.3 Tables
	4.3.1 Common
	4.3.1.1 The aliases table
	4.3.1.2 The users table
	4.3.1.3 The 822 Local Table
	4.3.1.4 The P3 Table
	4.3.1.5 The List Table
	4.3.1.6 The Shell Table



	Chapter 5 Content Checking
	5.1 Advanced Message Audit Database Features
	5.1.1 Quarantine
	5.1.2 Acknowledgement tracking

	5.2 Content Checking
	5.2.1 CCCP Checking Channel
	5.2.1.1 CCCP Channel tailoring
	5.2.1.2 Checker Channel Configuration
	5.2.1.3 Checker Channel Filters

	5.2.2 Virus Checking for AMHS Installations


	Chapter 6 Content Conversion
	6.1 Content Conversion in M-Switch
	6.1.1 When Content Conversion is done
	6.1.2 General Configuration for Content Conversion

	6.2 Shaper Channel
	6.2.1 Shaper Channel Operation
	6.2.2 Shaper Channel Configuration
	6.2.2.1 Tailoring Configuration
	6.2.2.2 Tailoring for S/MIME and Security
	6.2.2.3 Configuration File
	6.2.2.4 Exploder configuration
	6.2.2.5 Output node configuration
	6.2.2.6 Converter Configuration

	6.2.3 Specific Conversion Filters
	6.2.3.1 Internet Message filters
	6.2.3.2 X.400 Filters
	6.2.3.3 MIXER filters
	6.2.3.4 Textual Security Label Filters


	6.3 MIXER Content Conversion
	6.3.1 Internet to X.400
	6.3.2 X.400 to Internet
	6.3.3 Correlation
	6.3.4 Specifying Internet Heading Fields to be transmitted
	6.3.5 Specifying fields for MDN correlation

	6.4 MIXER Address Conversion
	6.4.1 Individual Address Mapping
	6.4.1.1 Configuring per-user mapping
	6.4.1.2 Configuring LASER tables for per-user address mapping



	Chapter 7 M-Switch ACP 127 Operating Signals
	7.1 M-Switch Architecture and Service Message Support
	7.2 Operating Signals

	Chapter 8 Security
	8.1 Overview
	8.2 Security Labels
	8.2.1 Background
	8.2.2 M-Switch Label Handling
	8.2.2.1 Label extraction
	8.2.2.2 Label Insertion
	8.2.2.3 Use in Authorization


	8.3 Content Scanning
	8.4 S/MIME Channel Configuration
	8.4.1 Verification
	8.4.2 Signing
	8.4.3 Encryption/Decryption
	8.4.4 Label Extraction/Insertion

	8.5 DKIM Configuration
	8.5.1 Shaper channel configuration
	8.5.2 DKIM configuration
	8.5.3 Table-based DKIM configuration
	8.5.4 DNS configuration

	8.6 Configuration of Cryptographic Services
	8.6.1 Overview
	8.6.2 Using the Configuration
	8.6.3 Security Database Details
	8.6.3.1 Command Line Tool
	8.6.3.2 Cryptographic Object URIs
	8.6.3.3 URI Type
	8.6.3.4 Provider
	8.6.3.5 Attributes
	8.6.3.6 Certificate Search URIs
	8.6.3.7 Specifying Passphrases
	8.6.3.8 URI Cache


	8.7 Signing and Encrypting Messages
	8.7.1 Internet to X.400
	8.7.2 X.400 to Internet

	8.8 Strong Authentication
	8.8.1 Channel Configuration
	8.8.2 Generating digital identities to be manually imported
	8.8.2.1 Creating a CA Using Sodium CA
	8.8.2.2 Generating a Digital Identity
	8.8.2.3 Importing the PKCS#12 Certificate to the x400p1 security environment


	8.9 Table Based Authenticated Entities

	Chapter 9 M-Switch Authorization
	9.1 M-Switch Authorization
	9.1.1 Rule Types

	9.2 Authorization Groups
	9.2.1 Creating An Authorization Group
	9.2.2 Authorisation: Testing Group Entries and Matching

	9.3 Rule Filters
	9.3.1 Basic Components
	9.3.2 Building Filters
	9.3.3 Items
	9.3.3.1 SMTP Caller Items
	9.3.3.2 Standard Message Items
	9.3.3.3 Message Security Items

	9.3.4 Operators
	9.3.5 Example Filter

	9.4 Authorization Rules
	9.4.1 Block Rules
	9.4.2 Permit Rules
	9.4.3 Combining Block Rules and Permit Rules

	9.5 Testing Authorization
	9.5.1 Testing Authorization: ckadr Usage
	9.5.2 Testing Authorization: ckadr examples

	9.6 Closed User Groups
	9.6.1 User Membership of Groups
	9.6.2 MTA-specific groups
	9.6.3 Special groups
	9.6.4 Closed User Group Operation


	Chapter 10 Boundary MTA
	10.1 Features
	10.2 Acknowledgements in a Boundary MTA
	10.2.1 Acknowledgements
	10.2.2 Adding Acknowledgement Requests
	10.2.3 Generation of Acknowledgements on Transfer or Delivery
	10.2.4 Use of Multiple Outbound Channels

	10.3 Use of Multiple Outbound Channels

	Chapter 11 Troubleshooting
	11.1 Checking the configuration
	11.2 Checking addresses
	11.2.1 ckadr
	11.2.2 Probes
	11.2.2.1 Configuring X.400 channels to support probe messages
	11.2.2.2 Running the probe tool
	11.2.2.3 Configuring the MTA to reject probe messages


	11.3 Other checking tools
	11.3.1 A /bin/mail replacement
	11.3.2 A /bin/sendmail replacement
	11.3.3 Messaging Configuration Integrity Checking

	11.4 X.400 connection troubleshooting
	11.4.1 How to test an X.400 connection

	11.5 Testing remote X.400 connections with MConsole
	11.5.1 Cannot connect to remote MTA
	11.5.2 Incoming X.400 Connections
	11.5.3 Authentication errors
	11.5.4 Remote MTA not found in our configuration

	11.6 Troubleshooting P3 connections
	11.7 Basic Message Tracking
	11.8 Preventing messages from being deleted
	11.9 M-Switch X.400 Logging
	11.10 Messaging System Checks
	11.10.1 Overview
	11.10.2 Running the DNS System Check
	11.10.3 References


	Chapter 12 Tips
	12.1 Installing the software on non-standard paths
	12.2 How can set a limit on the size of a message?
	12.2.1 Setting a per-channel maximum message size
	12.2.2 Setting a per-user maximum message size
	12.2.3 Preventing the submission of large messages

	12.3 Use of iaed in Table-based Configurations
	12.4 Non-standard Use of the X.400 Channel
	12.4.1 Starting the X.400 Channel from the command line to pull messages
	12.4.2 Starting the X.400 channel from the command line to recover a failed message
	12.4.3 Starting the X.400 channel as a static responder


	Chapter 13 Audit Database
	13.1 Audit Database Records
	13.1.1 Generic Message Logging
	13.1.1.1 Audit DB Record: Msgin
	13.1.1.2 Audit DB Record: ok, resubmit, redirect
	13.1.1.3 Audit DB Record: rrecip-pos, rrecip-neg
	13.1.1.4 Audit DB Record: ACDFfail
	13.1.1.5 Audit DB Record: Error
	13.1.1.6 Audit DB Record: Archive
	13.1.1.7 Audit DB Record: Label, Outlabel
	13.1.1.8 Audit DB Record: SignVerifyOK, SignVerifyNOTOK, SignVerifyUnknown, SignVerifyWarn
	13.1.1.9 Audit DB Record: DSN-msg
	13.1.1.10 Audit DB Record: DSN-recip
	13.1.1.11 Audit DB Record: MDN
	13.1.1.12 Audit DB Record: IPM
	13.1.1.13 Audit DB Record: IPN
	13.1.1.14 Audit DB Record: Trans, Deliv, Done, Quarantine, Discard
	13.1.1.15 Audit DB Record: Msgout

	13.1.2 Message Release
	13.1.2.1 Audit DB Record: Release

	13.1.3 Badmsg from ACP127, ACP142, P1
	13.1.3.1 Audit DB Record: Badmsg

	13.1.4 P1 Connections
	13.1.4.1 Audit DB Record: P1InitConnOK, P1InitConnFail, P1RespConnOK, P1RespConnFail
	13.1.4.2 Audit DB Record: P1InitDiscOK, P1InitAbort, P1InitReject, P1Unknown, P1RespDiscOK, P1RespAbort

	13.1.5 P3 Connections
	13.1.5.1 Audit DB Record: P3InitConnOK, P3InitConnFail, P3RespConnOK, P3RespConnFail
	13.1.5.2 Audit DB Record: P3InitDiscOK, P3InitAbort, P3RespDiskOK, P3RespAbort
	13.1.5.3 Audit DB Record: P3ConnectFrom

	13.1.6 ACP127
	13.1.6.1 Audit DB Record: ACP127addrMapFail
	13.1.6.2 Audit DB Record: ACP127Fill
	13.1.6.3 Audit DB Record: ACP127Recap
	13.1.6.4 Audit DB Record: ACP127Silence
	13.1.6.5 Audit DB Record: ACP127out
	13.1.6.6 Audit DB Record: ACP127Rejected
	13.1.6.7 Audit DB Record: ACP127in
	13.1.6.8 Audit DB Record: ACP127QueueDelete
	13.1.6.9 Audit DB Record: ACP127QueueAddition
	13.1.6.10 Audit DB Record: ACP127AuditEvent
	13.1.6.11 Audit DB Record: ACP127Conn
	13.1.6.12 Audit DB Record: ACP127FlashAck
	13.1.6.13 Audit DB Record: ACP127SM
	13.1.6.14 Audit DB Record: ACP127Config
	13.1.6.15 Audit DB Record: ACP127ManualOp
	13.1.6.16 Audit DB Record: ACP127Monitor

	13.1.7 OTAM
	13.1.7.1 Audit DB Record: OTAMConn

	13.1.8 SMTP
	13.1.8.1 Audit DB Record: ConnectFrom
	13.1.8.2 Audit DB Record: Disconnect, Reject, BadSyntax
	13.1.8.3 Audit DB Record: BadSender, BadRecip, BadData
	13.1.8.4 Audit DB Record: AuthFail
	13.1.8.5 Audit DB Record: AuthOK
	13.1.8.6 Audit DB Record: StartTLSOK, StartTLSFail
	13.1.8.7 Audit DB Record: Unknown

	13.1.9 ACP142
	13.1.9.1 Audit DB Record: ACP142out
	13.1.9.2 Audit DB Record: ACP142in

	13.1.10 Checking and CCCP
	13.1.10.1 Audit DB Record: Check

	13.1.11  Generic Service start/stop
	13.1.11.1 Audit DB Record: Service

	13.1.12 Qmgr SOM
	13.1.12.1 Audit DB Record: Login, Logfail, Logout
	13.1.12.2 Audit DB Record: UserEvent

	13.1.13 Profiler
	13.1.13.1 Audit DB Record: ProfilerMatch
	13.1.13.2 Audit DB Record: ManualAction




