
VAUADM-19.0

M-Vault Administration Guide

Table of Contents
Chapter 1 Overview... 1

The M-Vault Server has been designed and implemented to provide a foundation for a manageable,
scalable and high-performance LDAP or X.500 (2008) Directory Service. The Directory can be accessed
using a Directory User Agent (DUA), using either the Directory Access Protocol (DAP) or the Lightweight
Directory Access Protocol (LDAP).

Chapter 2 Setting up the Directory Service... 8

This chapter defines the tasks involved in setting up a Directory and the service to support it. It explains
the information you need to correctly create a Directory Server.

Chapter 3 Managing the Data... 18

This chapter describes how to add, modify and delete data using Sodium, either as individual entries or
in bulk. This chapter should be read by the Data Manager, although the Server Manager will find some
of the background information useful.

Chapter 4 System Management.. 58

This chapter explains how to use M-Vault Console to check and change the configuration of a Directory
Service. It also covers standard operational tasks and performance tuning.

Chapter 5 Authentication.. 72

This aim of this chapter is to explain the authentication mechanisms that can be used with M-Vault
Server.

Chapter 6 Controlling Access.. 97

This aim of this chapter is to explain how to define access to objects in the Directory. The M-Vault
Server includes a number of security features to control access to and modification of Directory
information.

Chapter 7 Connecting Directories.. 112

You may need more than one Directory Server to provide the Directory Service. This chapter cover
creating additional servers, creating knowledge references (superior, subordinate and cross references)
and specifying the authentication levels for connection.

Chapter 8 Shadowing... 121

Making sure that Directory information is close to those who need it minimises access times. This is
achieved by shadowing – or replicating – information so that more than one Directory Server holds a
copy of the same information.

Chapter 9 High Availability... 134

M-Vault provides three means of adding service resilience to system failure:

• Failover. Hot standby mode where a single master is active amongst a group of miror servers.

• Multimaster. All servers in a replication group accept changes and replicate them to all other members
of the group.

• Clustering. Hot standby mode where shared disks are used to support multiple nodes.

M-Vault Administration Guide

iiM-Vault Administration Guide

Chapter 10 HTTP And OCSP Services.. 144

M-Vault incorporates a Web server that can be used to serve the following:

• PKI information - HTTP serving of PKI and CA related directory entry attributes (e.g.
certificateRevocationList).

• Web applications - currently a Web application (and underlying API) providing an account password
modification user interface.

• OCSP service - provision of OCSP (Online Certificate Status Protocol) services on the basis of stored
CRLs.

This chapter describes how to configure these services using M-Vault Console and Sodium.

Chapter 11 Monitoring the Directory.. 150

The Directory Service can be monitored in several ways. Logs can be inspected, and certain status
information and statistics are kept by the system which can be displayed.

Chapter 12 Synchronising Directories (using Sodium Sync)... 162

This chapter explains how to use Sodium Sync for synchronizing data between directories, LDIF files,
CSV files and SQL databases.

Chapter 13 Managing Certificate Authorities (using Sodium CA)....................................... 197

This chapter describes the Sodium CA application, and explains how to use it to help configure and
manage a PKI (Public Key Infrastructure) for Isode products.

Chapter 14 OAuth2 Capabilities... 214

OAuth2 is a Web based framework that provides secure authorization services for Web based applications.
The system is based on a set of HTTP and token exchanges between the Web service, Web browser and
OAuth2 server. M-Vault includes an OAuth2 server component that provides authentication and
authorization services to Isode Web-based applications, a current example being Red/Black.

Part of the OAuth2 configuration is intended to be managed by the Cobalt user and account provisioning
application and the Cobalt manual should be consulted for this purpose. This chapter provides a lower
level and more detailed view of the M-Vault OAuth2 service configuration, including instructions for
how to view and manage the configuration using Sodium.

Chapter 15 SPIF Editor... 219

This chapter describes the SPIF Editor application and explains how to use it to create, edit and view a
SPIF (Security Policy Information File) and various utility functions.

Appendix A Introduction to Directories.. 239

This appendix provides a background to X.500 and LDAP Directories. It provides a context for Isode’s
implementation of the Directory, and should be read by anyone not familiar with the X.500 standard or
who wants to understand how Isode has implemented it.

Appendix B Attributes.. 253

This appendix provides details of the attributes associated with some of the common object classes,
indicating which are mandatory and which are optional.

Appendix C Attribute Syntaxes... 260

Attribute values have an internal structure described by their syntax. When communicated over LDAP,
or displayed in user agents like Sodium and M-Vault Console, the string representations associated with
those syntaxes are used. This appendix describes all the currently recognized syntaxes and their LDAP
string representations.

M-Vault Administration Guide

iiiM-Vault Administration Guide

Appendix D Customising Sodium.. 276

Sodium’s built-in templates can be modified to suit local needs.

Appendix E Advanced Configuration... 288

Once a Directory Server has been set up, you may wish to configure various attributes using a command
line scripting interface, such as Tcldish. This section describes the various attributes and entries which
can be configured.

Appendix F Running as an OS Service... 310

This section describes how to configure and run Operating System services.

Appendix G Tcldish – the Tcldish and Ltcldish DUAs... 316

This chapter describes the DAP and LDAP Directory management DUAs called Tcldish and Ltcldish.

Appendix H Dmish Scripting Interface... 348

This chapter describes the scripting interface Dmish. The Directory Management Shell (Dmish) is an
extended Tcl (Tool Command Language) shell for use by Directory administrators and systems integrators.

Appendix I References... 375

Glossary.. 380

M-Vault Administration Guide

ivM-Vault Administration Guide

 and Isode are trade and service marks of Isode Limited.

All products and services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations, and Isode Limited disclaims
any responsibility for specifying which marks are owned by which companies or
organizations.

Isode software is © copyright Isode Limited 2002-2023, all rights reserved.

Isode software is a compilation of software of which Isode Limited is either the copyright
holder or licensee.

Acquisition and use of this software and related materials for any purpose requires a written
licence agreement from Isode Limited, or a written licence from an organization licensed
by Isode Limited to grant such a licence.

This manual is © copyright Isode Limited 2023.

Copyright

vM-Vault Administration Guide

1 Software version

This guide is published in support of Isode M-Vault R19.0. It may also be pertinent to later
releases. Please consult the release notes for further details.

2 Readership

This guide is intended for administrators who plan to configure and manage Directory
Services using the M-Vault Server.

3 How to use this guide

You are advised to read through Chapter 1, Overview, before you start to set up your
Directory Service. If you are not familiar with X.500 Directories, you should also read
Appendix A, Introduction to Directories.

4 Typographical conventions

The text of this manual uses different typefaces to identify different types of objects, such
as file names and input to the system. The typeface conventions are shown in the table
below.

ExampleObject

isoentitiesFile and directory names

mkpasswdProgram and macro names

cd newdirInput to the system

see Section 5, “File system place holders”Cross references

Notes are additional information; cautions
are warnings.

Additional information to note, or a warning
that the system could be damaged by certain
actions.

Preface

viM-Vault Administration Guide

5 File system place holders

Where directory names are given in the text, they are often place holders for the names of
actual directories where particular files are stored. The actual directory names used depend
on how the software is built and installed. All of these directories can be changed by
configuration.

Certain configuration files are searched for first in (ETCDIR) and then (SHAREDIR), so
local copies can override shared information.

The actual directories vary, depending on whether the platform is Windows or UNIX.

UNIXWindows (default)Place holder for the
directory used to store...

Name

/etc/isodeC:\Isode\etcSystem-specific configuration
files.

(ETCDIR)

/opt/isode/shareC:\Program Files\Isode\shareConfiguration files that may
be shared between systems.

(SHAREDIR)

/opt/isode/binC:\Program Files\Isode\binPrograms run by users.(BINDIR)

/opt/isode/sbinC:\Program Files\Isode\binPrograms run by the system
administrators.

(SBINDIR)

/opt/isode/libexecC:\Program Files\Isode\binPrograms run by other
programs; for example,
M-Switch channel programs.

(EXECDIR)

/opt/isode/libC:\Program Files\Isode\binLibraries.(LIBDIR)

/var/isodeC:\IsodeStoring local data.(DATADIR)

/var/isode/logC:\Isode\logLog files.(LOGDIR)

/var/isode/tmpC:\Isode\tmpLarge PDUs on disk.(CONFPDUSPOOLDIR)

/var/isode/switchC:\Isode\switchThe M-Switch queue.(QUEDIR)

/var/isode/d3-dbC:\Isode\d3-dbThe Directory Server’s
configuration.

(DSADIR)

6 Support queries and bug reporting

A number of email addresses are available for contacting Isode. Please use the address
relevant to the content of your message.

• For all account-related inquiries and issues: customer-service@isode.com. If customers
are unsure of which list to use then they should send to this list. The list is monitored
daily, and all messages will be responded to.

• For all licensing related issues: license@isode.com.

• For all technical inquiries and problem reports, including documentation issues from
customers with support contracts: support@isode.com. Customers should include relevant
contact details in initial calls to speed processing. Messages which are continuations of
an existing call should include the call ID in the subject line. Customers without support
contracts should not use this address.

Preface

viiM-Vault Administration Guide

mailto:customer-service@isode.com
mailto:license@isode.com
mailto:support@isode.com

• For all sales inquiries and similar communication: sales@isode.com.

Bug reports on software releases are welcomed. These may be sent by any means, but
electronic mail to the support address listed above is preferred. Please send proposed fixes
with the reports if possible. Any reports will be acknowledged, but further action is not
guaranteed. Any changes resulting from bug reports may be included in future releases.

Isode sends release announcements and other information to the Isode News email list,
which can be subscribed to from the address: http://www.isode.com/company/contact.php

7 Export controls

Many Isode products use TLS (Transport Layer Security) to encrypt data in transit. This
means that these products are subject to UK Export Controls.

For some countries (at the time of shipping this release, these comprise all EU countries,
United States of America, Canada, Australia, New Zealand, Switzerland, Norway, Japan),
these Export Controls can be handled by administrative process as part of evaluation or
purchase. For other countries, a special Export License is required. This can be applied for
only in context of a purchase order for those Isode products.

You must ensure that you comply with these Export Controls where applicable, i.e. if you
are licensing or re-selling Isode products.

The TLS feature of Isode products is enabled by a TLS Product Activation feature. This
feature may be turned off, and Isode products without this TLS feature are not export
controlled. This can be helpful to support evaluation of Isode products in countries that
need a special export license.

Isode products are used to administer sensitive data and so Isode strongly recommends
that all operational deployments of Isode products use the export-controlled TLS feature.

All Isode Software is subject to a license agreement and your attention is also called to the
export terms of your Isode license.

Preface

viiiM-Vault Administration Guide

mailto:sales@isode.com
http://www.isode.com/company/contact.php

Chapter 1 Overview
The M-Vault Server has been designed and implemented to provide a foundation for a
manageable, scalable and high-performance LDAP or X.500 (2008) Directory Service.
The Directory can be accessed using a Directory User Agent (DUA), using either the
Directory Access Protocol (DAP) or the Lightweight Directory Access Protocol (LDAP).

Note: If you need some background information about LDAP and X.500
directories in general, see Appendix A, Introduction to Directories.

1.1 Roles

Directory Services are often administered by people with different functions or roles. Two
roles are referred to throughout this manual:

• Server Managers

Someone with this role is responsible for managing the configuration and administrative
tasks associated with the Directory Service (for example starting and stopping the server).

Someone in this role may not need access to confidential information stored in user
entries.

• Data Managers

Someone in this role is responsible for the data content held within the Directory and is
likely to have rights to access confidential information within that data.

Note: The roles may, in some organisations, be performed by the same people -
but the responsibilities of each role are quite different.

1.2 Planning and preparing for the Directory

The areas to be considered when you are preparing to set up a Directory Service include:

• The logical structure of the contents of the Directory (and its associated schema)

• The initial naming context of your Directory Server (or of the first Directory Server, if
you have more than one)

• Where the Directory fits in the overall hierarchy: are you only concerned with information
within your own organization, or do you need a wider or deeper hierarchy, perhaps
including country level

• How and whether the Directory is going to be distributed: is the information going to
be shared across several Directories

Overview

1M-Vault Administration Guide

This planning and preparation is carried out by the Server Manager, in consultation with
the Data Manager.

Caution: If you are upgrading from an earlier version of M-Vault, you must read
the release notes provided in case there are changes to the structure of the database
between the versions. Failure to take appropriate action may result in loss of data.

1.2.1 The logical structure of the Directory

The way the data is structured is dictated by its intended use. Some broad example are:

• White Pages, which may be used to support address books or PKI.

• XMPP configuration (for M-Link).

• IMAP configuration (for M-Box).

• Messaging configuration (for M-Switch).

• Address book for AMHS.

A Directory is hierarchically structured, in the shape of a tree known as the Directory
Information Tree (DIT). The width and depth of that tree are determined by your choices
in structuring that hierarchy. For example if your Directory Server is not part of any bigger
Directory infrastructure – perhaps it is just being used as a repository for user accounts for
M-Link or M-Box – then you would typically create a very flat and wide structure.

Figure 1.1. Hypothetical local Directory Information Tree

o=Acme Limited

ou=Staff

cn=Bill Smith cn=Secretary

cn=DSA

ROOT

Entry of object class
organizationalPerson

Entry of object class
organizationalRole

Entry of object class
organizationalUnit

Entry of object class
applicationEntity

Entry of object class
organization

The Directory can be distributed over several Directory Servers, each one holding a subset
of the information (see Chapter 7, Connecting Directories), and each server can use a
different sub-structure. When you set up your Directory, you should consider the overall
structure and where your Directory Server fits within it.

In a (hypothetical) world-wide Directory (as shown in Figure 1.2, “Hypothetical world-wide
Directory Information Tree”), entries for countries, international administrative regions
(such as Europe), and international organizations are listed just below the root of the tree.
Below country entries are entries for localities (states and provinces) and organizations of
national significance, such as government departments. Entries for other kinds of
organizations are typically listed under the locality in which they are situated. At the leaves
of the tree are entries for individuals, pieces of equipment (such as printers) and other
simple objects (such as roles and applications).

Overview

2M-Vault Administration Guide

You are allowed a considerable degree of flexibility with regard to the depth and contents
of the DIT. Some levels may be omitted, while others, such as organizational unit, can also
be used at one or several levels.

Figure 1.2. Hypothetical world-wide Directory Information Tree

ROOT

Entry of object class
organizationalPerson

Entry of object class
organizationalRole

Entry of object class
organizationalUnit

Entry of object class
applicationEntity

Entries of object class
organization

Entries of object class
country

o=Acme Limited

ou=Staff

cn=Bill Smith cn=Secretary

cn=DSA

c=US

o=Acme Limited

c=GB

1.2.1.1 What sort of structure do you need?

Many Directories are used for White Pages queries – searching for people in organizations
using their names or other attributes. If this is the purpose of your Directory, keep the
number of levels to a minimum. A flat tree means that Directory names (see Glossary) will
be relatively short: a deep DIT leads to long Distinguished Names. (See Section A.2.4,
“Naming objects”, for an explanation of Distinguished Names.)

Two things determine the depth of the DIT:

• How far down the overall (international) DIT an organization is placed. Your organization
will be placed in the locality in which it is situated in reality; for example, a country.

• The structure of the DIT within that organization.

Do not sub-divide your organization more than is necessary: two levels of organizational
unit should be enough even for large organizations, and organizations with only a few tens
or hundreds of employees should consider not using organizational units at all.

As part of creating the Directory Service, you may have specified the initial naming context
(the top of your portion of the DIT) which the Directory Server will master. If you did not
do this then, you will have to specify the initial naming context before you can start to
place data in the Directory.

1.2.2 The initial naming context

The Distinguished Names of the object entries in the Directory will be determined not only
by the schema, but also by the initial naming context selected for the Directory Server (see
the section called “The naming context” for a definition of a naming context). When you
set up a Directory Server you specify the Distinguished Name of the entry at the top of its
initial naming context.

Overview

3M-Vault Administration Guide

The Directory Server will master all entries from that point down the DIT hierarchy. All
object entries to be mastered by this Directory Server are held within this initial context.

General guidelines on naming user information objects are given in Section A.2.4, “Naming
objects”.

1.2.3 Administration of the Directory

Administration of the Directory is mainly concerned with access control and the control
of collective (shared) attributes.

After the Directory Server has been created, you will be able to connect to it using Sodium
(see Section 3.3.1, “Browsing the Directory”) to create roles, define access points and
control, and populate the Directory with data.

General guidelines on how to manage security in the Directory are given in Chapter 5,
Authentication and Chapter 6, Controlling Access.

1.2.4 Distribution of the Directory

The Directory can be distributed widely over many computer systems.

Note: If a request cannot be answered by a Directory Server, it may be passed
to another using available references, with any answer being passed back along
the same chain. This is the way the Directory Server operates when it is first set
up. You may prefer to change this, so that the request is sent back with a referral
to another Directory server that the requester should contact directly. Instructions
for creating references and switching between ‘chaining’ and ‘referral’ are given
in Chapter 7, Connecting Directories.

• If you are sure that the information in your Directory is going to be held and updated
on a single Directory Server and you are not going to need to change this later, the issues
of distribution and communication with other Directory Servers are largely irrelevant.

• If you think you may want to distribute your Directory or connect to other Directories
in the future, you need to consider this when locating your Directory Server within the
DIT.

• If you know that you need to distribute your Directory across several Directory Servers,
possibly on different machines in different locations, you need to consider how to divide
your information among them.

1.3 Directory management tools

The management tools provided by Isode can be divided into tools used for:

• Setting up and managing the Directory Service: maintaining the operational information
in the Directory.

• Accessing the Directory Information Base: maintaining the user information in the
Directory.

• Monitoring the Directory Service.

1.3.1 Managing the Directory Service

Two tools are available for managing the Directory Service:

Overview

4M-Vault Administration Guide

• M-Vault Console

• Dmish, which is a scripting interface that can manage the same operational information
and that is useful for batched or repetitive tasks.

1.3.1.1 M-Vault Console

M-Vault Console is a graphical user interface for managing the M-Vault Server, and can
be used for the following tasks:

• Creating and managing new Directory Servers.

• Starting and stopping local Directory Servers.

• Maintaining a manager’s list of Directory Servers.

• Setting up and maintaining controls for authentication.

• Managing naming contexts.

• Maintaining references to Directory databases (GDAMs).

• Adding a superior reference to another Directory Server.

• Managing shadowing agreements between Directory Servers.

• Managing attribute indexes.

An overview of the interface is given in Section 4.4, “Overview of M-Vault Console”, and
details on how to use the tool to perform various tasks are given where the task is described.

1.3.1.2 Dmish

The Dmish command line scripting interface enables you to carry out many of the same
tasks as are possible using M-Vault Console. This is a Tcl (Tool Command Language)
application and is particularly useful for carrying out repetitive or regularly-run tasks, as
it can be used in batch mode and has all the features of the Tcl interpreter available for
writing scripts.

Dmish can be used to:

• Create a Directory Server.

• Start a Directory Server.

• Stop a Directory Server.

• Maintain managed objects.

Details on how to use the interface are given in Appendix H, Dmish Scripting Interface.

1.3.2 Maintaining information in the Directory

The information in the Directory can be maintained using a Directory User Agent (DUA).
Isode provides two tools:

• Sodium (Secure Open Data, Identity and User Manager), which has a graphical user
interface.

• Tcldish, which has a command line scripting interface.

1.3.2.1 Sodium (Secure Open Data, Identity and User Manager)

Sodium is designed to handle complex data management tasks across multiple Directory
Servers, using a graphical user interface. It allows you to:

• Manage information on multiple Directory Servers across the network from a single,
remote client, using DAP or LDAP to access the Directory.

• Connect to (and disconnect from) individual Directory Servers.

Overview

5M-Vault Administration Guide

• Browse the DIT.

• Display the entries using different views.

• Search for entries using filters.

• Add and modify entries using templates.

• Check the integrity of any Distinguished Name references.

• Manage complex data in the Directory.

• Manage administrative points and access controls.

• Import and export multiple entries (bulkload and dump) using LDIF files.

An overview of the Sodium interface is given in Section 3.3.1, “Browsing the Directory”.

1.3.2.2 Tcldish

The general term, Tcldish, is used to refer to the DAP and LDAP Directory management
DUAs Tcldish and Ltcldish.

• Tcldish uses DAP to access the Directory

• Ltcldish uses LDAP to access the Directory.

Tcldish is not intended as a general DUA. Its purpose is to provide a command line interface
to the Directory. The commands, based on Tcl (Tool Command Language) allow you to
move around, view and modify parts of the DIT, write and execute scripts and manage
DSAs.

Specifically, you can:

• Connect to (and disconnect from) a Directory Server.

• Display the attributes of entries.

• Compare the attributes of entries.

• Search for entries matching given criteria.

• Add, delete and modify entries.

You can also use Tcldish to bulk load, delete and backup sections of the DIT, using LDIF
files. You can bulk load from CSV files, if you require.

Details on how to use the interface are given in Appendix G, Tcldish – the Tcldish and
Ltcldish DUAs.

1.3.3 Monitoring the Directory Service

Various log files are available for monitoring the Directory service. By default, these files
are located in (LOGDIR) and have the names:

• dsa-audit.timestamp.log, the Directory Server Audit Log

• dsa-event.timestamp.log, the Directory Server Event log

• dua-event.timestamp.log, the Directory User Agent Event Log

The locations of these log files, as well as the types of events logged and the level of detail
contained in log messages can all be tailored to suit the needs of a specific installation. For
details, see Chapter 11, Monitoring the Directory.

Facilities are provided within M-Vault Console for monitoring:

• the Directory Server and connections to it (successful and unsuccessful, and analysed
by type of operation)

• shadowing agreement status

Overview

6M-Vault Administration Guide

• attribute indexes.

More details on monitoring the Directory Service are given in Chapter 11, Monitoring the
Directory.

Overview

7M-Vault Administration Guide

Chapter 2 Setting up the Directory Service
This chapter defines the tasks involved in setting up a Directory and the service to support
it. It explains the information you need to correctly create a Directory Server.

Note: This chapter assumes you have already downloaded and installed M-Vault.

Setting up the initial Directory Service involves, in sequence:

1. Initial planning and preparation (see Section 1.2, “Planning and preparing for the
Directory”).

2. Setting up the first Directory Server.

3. Starting this Directory Server and opening a management connection to it.

4. Checking the initial configuration.

5. Setting up the initial Directory Information Base.

6. Setting up administration and security.

Note: This chapter describes the process using M-Vault Console, which uses a
creation wizard to guide you. If you need, or prefer, to carry out the same tasks
using the scripting interface, see Appendix H, Dmish Scripting Interface.

2.1 Information required for setup

Before you can set up the first Directory Server (or any Directory Server) you need to have
the following information:

• Where the information held by the Directory Server fits in the overall hierarchy – see
Section 1.2.1, “The logical structure of the Directory” for guidance.

• What information the Directory Server is to master – the information it is going to
contain.

• The Access Point for the Directory Server, so that it can be contacted by Directory User
Agents (DUAs) and, possibly, other Directory Servers. This means you need to know
or determine the following:

• The location of the Directory Server’s entry within the Directory Information Tree
(DIT) – in other words, the Distinguished Name (DN) of the Directory Server.

• The location of the Directory Server on the network – its Presentation Address.

• Where the configuration files for the new Directory Server are to be stored. You need
the name of an empty filestore directory.

• A password for the Server Manager.

2.1.1 The Directory Server’s role in the administration

Directory Servers are providers of a Directory Service within an administration. An
individual Directory Server provides user information for a particular type of administration.
It is thus said to represent that administration.

When you install a Directory Server, you need to give the server a DN – its location within
the DIT. For example:

Setting up the Directory Service

8M-Vault Administration Guide

• If your Directory is going to hold information for an organization that is either an
international organization (crossing country boundaries) or it does not need to specify
the country in which it is located, the DN of the DSA could be something similar to:
cn=DSA,o=International Herald Tribune.

• If your Directory is a national organization and you want to locate it within a country,
you can include the country in its DN. For example, cn=DSA,o=Singapore Straights
Times,c=SG.

• If you want to define the relationship between your Directory’s entries and those held
in another Directory more precisely, you may choose to add a location between the
country and the organization. For example: cn=DSA,o=Oxford Times,l=Oxford,c=GB.

The DN of the server must begin with the cn= portion, but what you add after that depends
on your particular implementation.

2.1.2 The information the Directory Server is to master

When a Directory Server is responsible for a set of user information entries, the Directory
Server is said to master that information. The Directory Server may be used to master a
complete Directory Information Tree (DIT), or only part of it. The part of the Directory
which is mastered by a single Directory Server is termed a naming context. The entries
within that naming context cannot be updated by any other Directory Server (see
Section A.3.2.1, “Directory Servers” for a fuller explanation).

The Distinguished Name (DN) of the top entry of the naming context in the DIT is termed
the context prefix. This is used to identify where in the DIT the naming context starts. The
Directory Server masters user information from that point.

A single Directory Server can master more than one naming context. The one specified
when the Directory Server is first set up is called the initial naming context, but you can
add further naming contexts later. See Section 3.5, “Adding single entries to the Directory”.

Note: A Directory Server may be used to hold only replicated information
mastered by another Directory Server, and may not be responsible for any
information of its own. In this case, you will not have to specify the naming
context. If the Directory Server is used to master information, you must specify
a context prefix; the initial naming context cannot commence at the root, although
it can be immediately subordinate to it.

2.1.3 Using bind profiles

To make a connection to a server, you typically need to provide at least some of the
following information:

• server address (for example, hostname and port number)

• authentication type (for example, anonymous or simple)

• extra authentication information (for example, username and password)

• extra connection options (for example, whether to impose a time limit on searches).

In some cases it may be appropriate to specify this information at the point of making a
once-only connection to a server. But more often it is useful to specify this information
once, and then re-use the same set of information whenever you want to refer to the same
type of connection to the same server.

Isode tools provide a mechanism to do this, by wrapping up the collection of parameters
in a Bind Profile. Bind Profiles are stored in a file on disk so that they are available whenever
you run an Isode application which uses them. When you create a Bind Profile, you assign

Setting up the Directory Service

9M-Vault Administration Guide

it a name, which makes it easier to recognise. For example, you might have Bind Profiles
called “UK Server” or “Management connection to backup server”.

Note: A bind profile is created automatically for any new Directory Servers you
create using M-Vault Console.

Because Bind Profiles have user-defined names, they are also used as a way of making
display of information more convenient. For example, when M-Vault Console shows
information about a shadowing agreement, it may show a Bind Profile name (for example,
uk server) in addition to displaying the presentation address of the peer Directory Server.
In this case, it is not necessary for the Bind Profile to contain any authentication information.

A Bind Profile may contain sensitive data (such as passwords, which saves you having to
enter them every time you establish a new connection). When saved on disk, any such data
are protected by being encrypted. The whole set of Bind Profiles will be encrypted and
protected by a single Bind Profile Passphrase, which you must provide before being able
to use them.

2.2 Creating a Directory Server

Setting up the first (or any) Directory Server involves the following steps:

1. Creating the Directory Server system account on the network (see Section 2.2.1,
“Creating the Directory Server system account”).

2. Starting M-Vault Console.

3. Creating the Directory Server.

2.2.1 Creating the Directory Server system account

The first step in creating a Directory Server configuration is to establish a system account
for it on the host computer. Ideally, each Directory Server on the system should be assigned
a special, non-privileged user identifier. Where there is only one Directory Server on the
system, the user identifier could be dsa, for example. The user with this identifier is regarded
as the owner of the Directory Server database.

On UNIX systems, you could create this account by editing /etc/passwd, unless there is an
administration command on your system to create new accounts.

On a Windows system, the User Manager administrative tool should be used to create the
account. You need administrator privileges to create this account. You also need to assign
administrator privileges to the new account.

The directory (LOGDIR) must be writeable by this account. Other directories of the
Directory Server installation, including (SHAREDIR), (ETCDIR) and (LIBDIR) and their
files, must be readable by the account.

The Directory Server is created using M-Vault Console.

The same process is followed whether you are creating a new or a subsequent Directory
Servers.

2.2.2 Starting M-Vault Console

On Unix, run /opt/isode/sbin/mvc

Setting up the Directory Service

10M-Vault Administration Guide

On Windows systems, select M-Vault Console from within the Isode group on the Start
menu.

2.2.2.1 Setting a passphrase

At start up, a window is displayed asking for a passphrase that will be used to encrypt the
bind profile information for the currently logged-on user (see Section 2.1.3, “Using bind
profiles”).

1. Type the passphrase you want to use to access the bind profile you are about to create.

You will be asked for this passphrase every time you start M-Vault Console.

Caution: This passphrase does not prevent another user from using tools to
view or modify the Directory Server configuration files directly on disk.

2. Click OK. You will be prompted to create a DSA (Directory Server) or a profile for an
existing DSA.

3. Click OK. The M-Vault Console window is displayed.

2.2.3 Creating a Directory Server

A wizard is used to create the Directory Server, prompting you for the required information:

• Click Next to store - and validate - your information and display the next page.

• Click Back to show the previous page so that you can check and amend the information,
if necessary.

• Click Cancel to abandon the process.

Step-by-step instructions are provided for creating a Directory Server with the default
configuration, with an overview of the variations available in subsequent sections.

1. Click Create on the tool bar and select New Directory Server from the options shown.

Setting up the Directory Service

11M-Vault Administration Guide

2. The DSA creation template selection page opens.

Select the template that corresponds to the type of Directory Server you want to create:

• Default DSA Configuration creates a DSA containing a single user account, which
you will specify. This account is a member of both the Server Manager and Data
Manager groups, whose members have permissions relevant for their roles.

• Simple DSA setup for Messaging Evaluations creates a DSA with the structure
necessary for an evaluation of a messaging solution - a simplified version of DSA
for Messaging Only. See Section 2.2.3.1, “Creating a simple DSA for messaging
evaluations” for an overview of this option.

• Standard DSA with Super User creates a DSA similar to the first (Default DSA
Configuration) option, but with an additional user role outside of the Directory
hierarchy. Select this option if you need to alter the structure of your Directory,
removing the automatically created structure and replacing it with one of your own.
See Section 2.2.3.2, “Creating a DSA with super user account” for an overview of
this option.

Note: The remainder of these instructions assume you have selected Default
DSA Configuration.

Click Next.

3. Set up the initial structure of your Directory, replacing any xx values with your own.
If you change the Base DN, the change is carried down through the rest of the template.

Setting up the Directory Service

12M-Vault Administration Guide

❶

❶ Change the name of this Initial Directory User to be a real person.

Click Next.

4. Depending on the template you have selected, you may be prompted with a page showing
you a set of pre-defined access control rules that can be configured in the new Directory.
Any rules you choose to configure will subsequently be visible when you use Sodium’s
Global Access Control View. See Section 6.2, “Global access control”.

Click Next.

5. Select the groups that you want to be created. CRL Writers’ Group, Certificate
Writers’ Group and CA Managers’ Group all relate to the use of certificates to
authenticate users. If you are not using certificates, you do not need these groups.

Click Next.

6. The Passwords configuration window is shown, with a system-generated password
for the Initial Directory User. You can change this if you want to, but need to keep a
copy of whatever it is, as you will need it to connect to the Directory.

Select Show to show the contents of the password field in plain text.

Click Next.

7. The Bind Profile Names and Filesystem Location window opens.

Setting up the Directory Service

13M-Vault Administration Guide

You can use any value for the bind profile name. The default is the DN of the Directory
Server followed by the name of the person managing it.

Specify the location to store the Directory database (the DSA folder). The installation
process creates the final directory in the path, and so requires write access to the parent
folder. For example, if you specify a path of J:\Isode\d3-db, then J:\Isode must already
exist and be writable: d3-db must not exist in that location and will be created.

8. The Address Configuration page opens.

You can specify basic connection information using this page, and enable both DAP
and LDAP connections.

Setting up the Directory Service

14M-Vault Administration Guide

A selection of Port numbers are available: the Alternate... options will normally only
used if the Standards-based or Isode default port numbers are already in use.

Click Full Presentation Address Editor to specify more details or alternative ports:
instructions are given in Section 2.2.3.3, “Specifying a presentation address”.

Click Next.

9. The Confirm Details page is shown. Check that all the information it shows is correct.
If anythings needs to be changed, click Back to step back through the wizard.

Click Finish.

The wizard will then create and start the Directory Server. When the process is complete,
you will be asked whether you want to connect to it now. If you click Yes, the M-Vault
Console application opens, showing configuration information for the Directory Server on
several tabbed pages. The interface is described in general terms in Section 4.4, “Overview
of M-Vault Console”.

2.2.3.1 Creating a simple DSA for messaging evaluations

The creation of a DSA for this purpose follows the basic wizard described above, but skips
irrelevant pages.

The majority of the structure created with the option is predefined. You can specify your
own Base DN and the Initial Directory User (highlighted below).

2.2.3.2 Creating a DSA with super user account

This option creates an account with a super user (cn=DSA Manager,cn=config) in addition
to the Initial Directory User. The super user is able to create a complete Directory structure
after the DSA has been created.

Two passwords are created, one for each user, and two profiles. This enables you to bind
to the Directory either as the named person who is the Initial Directory User or as the
DSA Manager.

Setting up the Directory Service

15M-Vault Administration Guide

2.2.3.3 Specifying a presentation address

A presentation address is one component of the Access Point for a Directory Server (the
other being its Distinguished Name). In most cases, you will only need to provide the
hostname (or IP address) of the server and the port number on which the application will
be listening when either creating a Directory Server or connecting to one.

To help when specifying more complex presentation addresses, M-Vault Console includes
a facility that splits them down into their component parts.

Note: Presentation address components are only briefly summarized here. See
Section C.2.28, “PresentationAddress” and the M-Switch Administration Guide
for a fuller description of string format presentation addresses.

The string representation of a presentation address can consist of transport, session and
presentation selectors (up to three selectors), network addresses (up to eight), including an
LDAP address. However, the only mandatory component is a single network address.

The detailed version of the Presentation Address Configuration page is available when
you are asked to supply a presentation address, including:

• As part of the wizard when creating a new Directory Server (see Section 2.2.3, “Creating
a Directory Server”)

• As the Directory Server Address page when completing Advanced details (see
Section 3.2.2.2, “Creating or modifying a bind profile”).

• As the Server Address page displayed in the Configuration section of M-Vault Console
(see Figure 4.1, “The M-Vault Console Managing window”).

If the advanced version has been accessed from the Simple Hostname / Port Editor, it
will contain details that were entered on that simpler page.

• Click Add... to add other types of address information to those already shown (if any).

• Select an entry and click Edit... or double-click it to make changes.

• Select an entry and click Remove to delete it.

Setting up the Directory Service

16M-Vault Administration Guide

Click Selectors... to specify individual selectors. The selectors are Presentation, Session
and Transport.

The selectors can be entered as IA5 (text) or hexadecimal:

• IA5 means an IA5 (ASCII text) string. For example, X500 may be a valid text Transport
selector.

• Hexadecimal means a string of an even number of hexadecimal digits, for example,
001aff. The length of the selector is half the number of digits in the string. This is the
most general form and can be used to represent any selector value.

Click Advanced to see a string representation of the address that can be edited directly.

Note: Any change to any part of the Directory Server’s presentation address only
takes effect after the Directory Server has been stopped and restarted.

2.3 What’s next?

Depending on the role of the Directory Server, you may need to:

• Decide on the structure of the DIT it will master if this has not already been done – see
Section 1.2.1, “The logical structure of the Directory”.

• Delegate responsibility for management of the information stored within the Directory
(see Chapter 6, Controlling Access).

• Specify security settings: the level of authentication required by Directory User Agents
and secure connections (see Section 5.3, “Configuring authentication for specific
protocols”).

• Prepare and load any existing data, either in bulk or as individual entries – see Section 3.8,
“Importing and exporting entries” for guidance on preparing and uploading multiple
entries, or Section 3.5, “Adding single entries to the Directory” for instructions on adding
single entries.

• Connect to other Directories – see Chapter 7, Connecting Directories. Determine
shadowing (replication) requirements and create appropriate agreements between the
Directories involved – see Chapter 8, Shadowing.

Setting up the Directory Service

17M-Vault Administration Guide

Chapter 3 Managing the Data
This chapter describes how to add, modify and delete data using Sodium, either as individual
entries or in bulk. This chapter should be read by the Data Manager, although the Server
Manager will find some of the background information useful.

In particular, this chapter covers:

• Deciding where to store the information: choosing an appropriate location within the
Directory structure enables you to control access to it more easily. This is covered in
Section 1.2.1, “The logical structure of the Directory”.

• Classifying the data you want to store: this determines what you must and what you can
record about each entry. This is covered in Section 3.1, “Classifying the data”.

• Using Sodium to add, modify and delete Directory entries.

• Customising Sodium to meet your organization’s needs.

Appendix A, Introduction to Directories, contains useful background information about
Directories that will help you to make appropriate decisions.

Note: When a Directory Service is created, only the Data Manager is allowed to
add, modify or delete user information entries in the Directory. This management
responsibility can be delegated using one of the management tools provided by
Isode. See Chapter 6, Controlling Access, for more information.

3.1 Classifying the data

Before you start adding data to the Directory, you need to know what sort of data it is. In
Directory terms, this is defined by the object classes of that entry, which determine what
information can be stored about it.

When adding an entry to the Directory, you need to specify a structural object class (person,
organization, organizationalUnit and so on) and can optionally add multiple auxiliary
object classes to enable additional information to be recorded.

Sodium simplifies this for you: you choose the type of entry you want to add, which specifies
the structural object class, and then select from a list of pre-defined templates to enable
additional information to be recorded (see Section 3.4, “Modifying entries”, for information
on modifying entries, and Section 3.5, “Adding single entries to the Directory”, for
instructions on adding entries).

Note: The number of available object classes is large. We suggest some time is
spent familiarising yourself with the classes you might want to use for your
organization’s data. Some of the object classes contain more attributes than are
currently displayed on Sodium’s template pages. To view all the available attributes
within an object class, select the Schema view (see Figure 3.2, “Sodium’s Browse
page”).

Managing the Data

18M-Vault Administration Guide

3.1.1 What information can be stored?

The object classes selected for an entry define the set of attributes that the entry must (are
mandatory) and may (are optional) contain.Appendix B, Attributes, gives some examples
of structural object classes and their associated attributes.

Note: While it is possible to define your own set of additional attributes and
object classes (see Section B.2, “Extending the schema”), this should only be done
when there is no alternative. Locally defined attributes may not be understood by
remote systems.

3.1.2 Standard attributes

Many attributes available for use in White Pages and other applications are self explanatory
– such as Surname. The list below gives more detail for those that require some explanation
(these attributes are defined by the X.521 (2008) standard).

Note: It is important to use attributes to record the type of information they were
intended to record. You should not, for example, use Description to hold a
telephone number, as this will affect searching capabilities.

Note: The attributes below are listed as they are labelled in Sodium. The actual
attribute name is the same, without the spaces, unless otherwise specified:
variations are shown in square brackets.

See Also
Used to specify the DNs of other closely related objects. For example, when used as
an attribute of a room object, See Also could be used to indicate the room’s usual
occupant(s).

Postal Address Label
[postalAddress] Should be the full postal name and address, although it is limited to
six lines of thirty characters each, which is to be used for the physical delivery of paper
mail and parcels.

Phone
[telephoneNumber] Should be stored using the full international format defined in
E.123, for example +44 123 456789. Extensions can be indicated by appending the
letter “x” and the extension number to the telephone number.

Fax
[facsimileTelephoneNumber] Should be stored, like Phone, using the full international
format, but can have additional parameters for controlling fax machines that normal
phone numbers do not have.

Description
Can be used for arbitrary descriptive text about the object.

Title
Should be used to describe a job title or function within an organization.

City/Locality
[localityName] Used to identify the geographical areas of locality in which the object
is physically located.

State/Province
[stateOrProvinceName] Describes the state in which the locality is found.

Aliased Object’s DN
[aliasedObjectName] The full Distinguished Name of an aliased object.

Managing the Data

19M-Vault Administration Guide

Group Members
[member] Specifies the DN of a member of a Group of Names [groupOfNames].

Owner
The DN of the person responsible for the associated object.

Role Occupant
The DN of the person who fills an organizational role.

3.1.3 Internet attributes

More contact and personal details can be added by selecting the Internet Organizational
Person object class from the template. This makes a number of other attributes available,
such as E-mail [mail], Mobile, Pager and Home Phone.

3.1.4 Collective attributes

Many entries within a subtree may share the same values. For example, all people within
a small organisation might share the same telephone number and postal address. To manage
this easily and avoid duplication of data there is a special kind of attribute called a collective
attribute.

Collective attributes are stored in a subentry of an Administrative Point (see Section A.3.1,
“Administration of the Directory”), but they appear in all the entries within the
Administrative Area. Many of the standard attributes have a collective attribute subtype,
which means that any queries will retrieve values from both the individual and the collective
attributes. For example, collectiveTelephoneNumber is defined as a subtype of
telephoneNumber.

Sodium provides a special view that allows you to manage collective attributes (see
Section 3.7, “Collective Attributes”).

3.1.5 Unknown attributes

The M-Vault Server is configured with the most current, and commonly used attribute
types, together with attributes defined for its own use. However, other Directory Servers
may define their own local attribute types, and new standard attributes will continue to be
published, all of which will have to be handled by the M-Vault Server. In most cases, the
M-Vault Server will handle these attributes transparently by storing the attribute OID and
the ASN.1 along with its value. This unknown attribute subsequently can be returned in
future requests (hence a DUA/Directory Server which is configured with the attribute will
be able to handle it correctly). All unknown attributes are treated as user-attributes in order
for them to be handled appropriately by the M-Vault Server.

3.2 Data management using Sodium

Sodium is a Directory User Agent (DUA). It enables you to add, modify and delete Directory
entries. Creating and modifying entries using Sodium ensures that they contain all the
information required for the Directory to function correctly. You will not be able to create
an entry without specifying values for any mandatory attributes.

There are two basic methods for getting data into a Directory:

• Add the data entries individually.

• Get the data into an acceptable form, and bulk load it.

Managing the Data

20M-Vault Administration Guide

Obviously, if you have large amounts of data and can get it into an acceptable form, it is
much more efficient to bulk load it. See Section 3.8, “Importing and exporting entries”,
for more information. However you are going to add the data, you need to connect (bind)
to the Directory Server using a user who has permissions to do so (see Section 3.2.2,
“Binding to the Directory using Sodium”).

3.2.1 Profile passphrase

Bind profiles hold connection information for Directories. They can be protected by
encrypting them using a passphrase (see Section 2.1.3, “Using bind profiles”). When you
start Sodium, it will prompt you for this passphrase if your Bind Profile file is encrypted.

You can use Sodium without specifying a passphrase; however, you will be unable to
perform any of the functions related to the management of identities (X.509 functions –
see Section 3.10, “Managing identities”), and you will be unable to save passwords in your
bind profiles (see Section 3.2.2, “Binding to the Directory using Sodium”). If you have not
already created a passphrase for your bind profiles, you will be prompted to create one
when you start Sodium.

If you want to set a passphrase at a later time or change your existing passphrase, select
the X.509 menu and then select Set Sodium Passphrase.... If you are changing an existing
passphrase, you will be prompted to enter it for verification. If you change your profile
passphrase, then encrypted bind profile data and any deferred identities (see Section 3.10.2,
“Continuing to create a deferred identity”) will be re-encrypted using the new one.

Note: You use the same file containing bind profiles whether you are connecting
through Sodium or M-Vault Console. In Sodium you only see profiles for servers
that you manage and profiles that you create in Sodium. You cannot see profiles
that were created in M-Vault Console for ‘known’ servers (those you do not
manage).

3.2.2 Binding to the Directory using Sodium

To connect to a Directory, Sodium uses a bind profile (see Section 2.1.3, “Using bind
profiles”). Once a bind profile has been created, you can use it to create new connections
to that Directory Server (DSA) whenever you want.

Note: For a one-off quick connection to a DSA, select Session → Bind →
Connect... from the menus to create a temporary bind profile which will be used
just to perform a single bind.

To see the list of available bind profiles at any time, open the Bind Profile Management
window by selecting Session → Bind → Manager... from the menu.

Managing the Data

21M-Vault Administration Guide

Figure 3.1. Sodium’s bind profile manager

A bind profile always includes the location of the server, the protocol (DAP or LDAP) it
is using, and details about how to authenticate (for example, simple or strong authentication),
along with any necessary credentials. Other information may also be held in a bind profile,
such as the service controls to be used, or options which determine how Sodium displays
information once a connection has been made.

You can create as many bind profiles as you want, and they are saved when you quit the
application so that they will be available when you next run Sodium.

When bind profiles are saved to disk, Sodium will omit any sensitive data (such as
passwords) unless the bind profiles are encrypted.

If your bind profiles are not already encrypted, an Encrypt button is shown on the Bind
Profile Management window. If you click Encrypt, Sodium will prompt you for a
passphrase, which it will use to encrypt your bind profiles. You will then have to give this
passphrase whenever you run Sodium.

From the Bind Profile Management window, you can:

• Connect to a Directory using a bind profile

• Create a new profile or modify an existing one

• Delete profiles that are no longer required.

3.2.2.1 Connecting to the Directory

Select a profile from the list and click Connect. Once a connection has been made, Sodium
displays a Browse tab in the main window.

Note: When you make a new connection, any previous connections will remain
open (on separate tabbed pages). This means you may have simultaneous
connections to multiple Directories (or to the same Directory).

Disconnect from a Directory using the Session → Unbind menu option. A connection will
also be unbound if you close all the windows that were showing it.

3.2.2.2 Creating or modifying a bind profile

To create a bind profile, either click New... or Copy. Which you choose depends on how
much of the information you need is in an existing profile. For example, if you are creating
a second bind profile to connect to the same Directory but at a different access point or

Managing the Data

22M-Vault Administration Guide

using a different identity, choosing Copy will reduce the amount of information you need
to enter manually. You can them modify the copy to make any necessary changes.

To make changes to a bind profile, select it and click Rename or Modify. If the only thing
you need to change is the display name to make it more easily identified, select Rename.
If you need to change other information as well, click Modify.

Note: The steps are the same whether you are creating a new bind profile or
modifying an existing one.

1. Specify how the Directory will be contacted on the Directory Server Address page.
Use this page to specify the location of the Directory Server and the protocol used to
connect to it.

• The protocol you choose (DAP, LDAP or LDAPS) will change the Port number
displayed to the default for that protocol, unless it has already been edited.

• The background of the Hostname box will change from red (invalid) to orange to
clear as the hostname is entered, assuming it is a valid value that is reachable.

A hostname can be:

• A fully qualified domain name (for example, server1.myorg.co.uk)

• An IP address

• localhost.

• The Hostname is shown as the default Display Name, but this can be changed.

• Specify a Base DN if you want to connect to the Directory at a certain point in the
tree.

If you chose Advanced in the first drop-down list, you can specify all the elements of
the presentation address individually.

• The Directory Server Address page is shown in Advanced mode.

Managing the Data

23M-Vault Administration Guide

• Click Add... or select an existing entry and click Edit... to open the Network Address
window.

• Click Selectors to open a window for specifying Presentation, Session and Transport
details. See Section 2.2.3.3, “Specifying a presentation address”, for more information
on specifying the different selectors.

Click Next to move on to the Authentication Type page.

2. Choose the type of authentication you want to use when connecting to the Directory
using this profile. Access to the Directory depends on the correct credentials being
supplied when an attempt is made to bind.

Note: Authentication is the means by which the client and server prove their
identities to one another once a connection has been established. Descriptions
of the different levels of of security are given in Chapter 5, Authentication.

The available options are:

• Anonymous: No logon credentials (username or password) are required.

Click Next to go to the Anonymous Bind page, where the only option is to Start
TLS and then (optionally) to select an identity to use if the LDAP Server requires a
client certificate for TLS. See Section 5.7, “TLS configuration”, for information on
TLS.

• Simple: A DN is required, together with an optional password.

Click Next to go to the Simple Bind page. Select a Bind DN from the Directory and
enter the password if you do not want to be prompted for it when binding. You also
have the option to Start TLS (as with an anonymous bind).

Managing the Data

24M-Vault Administration Guide

• Strong: A strong bind uses a DN and a secure private key. For more information, see
Section 5.2.1, “Establishing identity”.

Click Next to go to the Strong Bind page. Start TLS is selected automatically, and
you must provide an identity. You can also provide an optional SASL Authorization
ID (see Section 5.5, “SASL authentication”).

• Kerberos: This type of bind uses a ticket issued by a trusted third party to authenticate
you.

Click Next to go to the Kerberos Bind page. You need to specify the level of security
(Security Layer) you require, whether Active Directory compatibility is required
and whether you are going to use Single sign-on (the same credentials as used when
logging on to the operating system) or will provide a Username and Password. See
Section 5.5.4, “SASL GSSAPI configuration”, for more information.

When you have set the bind credentials you require, click Next to go to the Session
settings page.

3. This page contains five separate pages, accessed by tabs. You only need to make changes
here if you want something other than the default settings.

Specify how you want to manage operations when results cannot be returned from the
local Directory on the Chaining page.

• Prefer Chaining - if the objects are not on the local Directory Server, chain to another
one if this is possible. Chaining passes the request to the other Directory Server and
then passes the result back to the requester.

Note: This option is a request, and is irrelevant if Prohibit Chaining (see
below) is selected.

• Prohibit Chaining - if the objects are not on the local Directory Server, do not chain
to other servers.

• Limit to Local Scope - only use data stored on Directory Servers considered to be
‘local’.

• Don’t Use Copy - if this option is selected, the Directory Server will only consider
master copies of information and will ignore shadow (replicated) information.

Managing the Data

25M-Vault Administration Guide

• Copy Shall Do - if this option is selected, a copy of information that may not be
complete is acceptable. This may be sufficient to answer some end-user queries (such
as obtaining an email address) and may be quicker than insisting only complete copies
are acceptable.

Note: This option is irrelevant if Don’t Use Copy is selected.

You can control the impact of operations using this bind profile using the Limits page.

• Priority - this is a numeric value that corresponds to a priority level associated with
any operation started by binding using this profile. 0 = low priority, 1= medium
priority, 2 = high priority.

• Size Limit - specify the maximum number of entries that are returned in a list or
following a search. The server will enforce an upper limit regardless.

• Time Limit - the maximum time, in seconds, that a results from a search or a request
to list entries can take. Any results that are not returned in this time are shown as
errors.

Advanced options enable you to access and view the information in different ways.

• Don’t Dereference Aliases is selected by default, which means that aliases that are
either the starting point of an operation (e.g. the search base of a search, the parent
of an add, or the object itself for other operations) are not automatically dereferenced.
If this option is not selected, then the real entry referenced by the alias is used.

• Request Password Policy Information - see Section 3.2.2.3, “Password policy”.

• Search Aliases - if selected, any aliases found in the search scope will automatically
be dereferenced, and those entries searched instead.

• Use Alias on Update - if selected and Don’t Dereference Aliases is also selected,
updates made to an alias entry will be applied to the alias and not to the entry it
references.

• Subentries only - when this option is selected, searches will only look at subentries
(entries held immediately below administrative points that hold access control, schema
or collective attribute details).

• Manage DsaIT - if not selected (the default), operations carried out during this session
will apply to normal entries. Select this option to direct operations to other levels
using knowledge references.

The Manager tab allows you to specify whether Sodium should present extra information
that is useful when performing management operations. Of special note is the Enable
Directory Server Manager GUI Features option: when this is selected, the View
menu is updated to include options which allow the creation of views to allow the
viewing and configuration of global and local access control (Section 6.2, “Global access
control” and Section 6.3, “Local Access Control Information (ACI)”), knowledge
references (Section 7.3.2, “Subordinate and cross references”) and collective attributes
(Section 3.7, “Collective Attributes”).

Use the Sodium page to specify

• Which views should be enabled (template, full, schema, raw)

• Whether the default view should be Full or Template

• Whether to issue a Confirm prompt before deleting any entries

• Whether to fill in memberof fields. By default, when displaying an entry whose
template has a Member of attribute, Sodium will perform a search of the entire DIT
in order to find groups that contain the entry’s DN. This allows Sodium to show which
groups contain the entry. For large directories where there are many groups, these
searches can be slow and so this option allows you to disable this functionality.

Managing the Data

26M-Vault Administration Guide

• Whether DN verification is performed. When an entry contains attributes that are
themselves distinguished names, DN verification means that Sodium will verify the
attribute values and highlight any that do not correspond to actual entries in the
directory. For entries where there are many attribute values of this type, you may
want to limit the number of values which Sodium verifies, or disable verification
altogether.

• Specify the entry in the DSA that contains security policy and catalogs that are to be
used when Sodium displays and edits SIO information.

4. Click Finish to complete the bind profile.

3.2.2.3 Password policy

Sodium is able to request password policy information when performing a bind to a
Directory Server. You can set this option using the Session Settings window, available in
in the Session menu, and also as the final stage of creating or modifying a bind profile).
Directory Servers may respond to this request with information about password expiration,
in which case Sodium will prompt the user to change his or her password.

A Directory Server may operate a password policy that imposes constraints on legitimate
values for passwords (such as minimum length); errors caused by the entering of illegal
passwords for the policy will result in Sodium requesting the user to try a different password.
See Section 5.6, “Password management”, for information on M-Vault’s implementation
of password policy.

3.2.3 Changing your password

In the case of simple authentication, the Directory Server maintains a copy of your password
(possibly in a hashed format; see Section 5.6.3, “Storing passwords in the GDAM”) which
it uses to validate bind operations. When you are bound using simple authentication, the
Session → Change my Password... menu option will be enabled, which lets you change
your password on the Directory Server (any new password you supply will be subjected
to whatever password policy checks are enabled on the Directory Server). If you change
your password using a session which is associated with a bind profile, then Sodium will
also update the bind profile to reflect the updated password, which means that the bind
profile will continue to work with the new password.

3.3 Finding Directory entries

You can find Directory entries to check the values they contain or to make changes either
by browsing the Directory (described below) or by searching for them (see Section 3.3.2,
“Searching the Directory”).

Managing the Data

27M-Vault Administration Guide

3.3.1 Browsing the Directory

A Browse page (identified by a tab that is labelled Browse: followed by the name of the
currently selected object) is opened when you connect to a Directory server. You can
expand the tree (described in step 3, below) to see the contents of the Directory.

The different sections of the page have been numbered in Figure 3.2, “Sodium’s Browse
page”, for ease of reference: a description follows the image.

Figure 3.2. Sodium’s Browse page

❶

❷ ❸

❹

❺

❻

Key to numbers:

1. The tab itself. This displays both the type of tab and the name of the entry currently
being viewed.

Click the ‘X’ on the right of the tab to close that page.

2. The name and authentication level of the current connection are displayed at the top of
the page, immediately below the tab.

3. Over to the right of this area is a drop-down list which changes the view of the contents
on the right-hand side of the page, and a lock button that allows the current view and
tab to be maintained whilst browsing between entries.

4. The left-hand side of the page shows a hierarchical tree view of the Directory.

Initially there will be only one entry in the view labelled World which represents the
root entry of the connected Directory Server.

You expand each entry in the view to reveal the entries immediately below it in the DIT.
Entries retrieved from the Directory will be named with their RDNs; for example,
o=Acme Limited or cn=DSA Manager. Some entries will have no child entries and
so cannot be expanded or contracted.

Right-click on an entry in this area to show a menu that mirrors the options available
in the Operations menu.

Managing the Data

28M-Vault Administration Guide

5. The right-hand side of the page shows information related to the entry selected on the
left-hand side in a series of tabbed pages. The way in which this information is displayed
is determined by the option selected from the drop-down list at the top of the page.

• Template – attributes are only displayed when they are defined in an appropriate
template.

• Full – this is the same as the Template view, except that any attributes returned that
are omitted from the templates are displayed in an extra Misc tab.

• Schema – this shows one tab per object class, and shows each attribute permitted in
each object class using an appropriate editor. It does not use templates.

• Raw – this shows a single tab, and shows each attribute using an appropriate editor.
It does not use templates.

• Custom – this shows a single tab listing each attribute that has failed Sodium’s
referential integrity checking.

6. The full DN of the entry read is displayed at the bottom of the main window next to the
Abort button.

The Abort button is used to cancel any currently active operations. This can be useful
if a Directory Server is slow to respond.

Note: You can open multiple Browse pages: right-click on an object and select
Browse or select Operations → Browse from the menu. The new page will open
in a new window, but you can drag it to form a new tab in your existing window
if you prefer.

3.3.2 Searching the Directory

In a Directory containing a large number of entries, it may be easier to find an entry by
searching than by browsing.

Note: A search will start from whichever object you have selected. So, for
example, if you start a search when you first bind to the Directory without doing
anything else, you will be searching the whole Directory (from World level). If
you know, for example, that the entry you want is inside a particular organization
or organizational unit, select it before you start the search.

To start the search:

• Right-click on an object and select Search.

• Select Operations → Search from the menu.

You can choose either:

• Simple Search – type the text you are searching for into a text field and then click OK.

This option searches for entries containing your text in attributes commonly used for
names (such as commonName, surname, etc.).

• Advanced Search, which allows you to build an LDAP-style search filter (see Figure 3.3,
“Sodium’s search window”).

1. Select the Attribute Name you want to search from the list.

2. Select the Matching Rule you want to use.

3. Type the value you are searching for.

The search filter will be created by Sodium and will be displayed in the bottom field.

4. Click OK.

Managing the Data

29M-Vault Administration Guide

Figure 3.3. Sodium’s search window

3.3.2.1 Viewing search results

Results from the search are displayed on a Search tabbed page, identified by the word
Search: followed by search filter you used; for example, Search: (surname=Bro*).

The results are displayed in the same kind of tree view as used in the Browse page (see
Section 3.3.1, “Browsing the Directory” for an explanation of the page display), except
that only the entries matching the search filter are displayed.

Figure 3.4, “Results of a search” shows the results of a search. The italicized entries in the
tree view are not search results; they are present so that the real search results are displayed
within the appropriate hierarchy.

Click an entry in the tree to display information about that object it in the right-hand side
of the page. Selecting Refresh Search from the DIT context menu or from the Operations
menu requests fresh results from the Directory Server to refresh the view.

Managing the Data

30M-Vault Administration Guide

Figure 3.4. Results of a search

Note: You can have the results from several searches open at once. Use the
information on the tabs to identify them.

3.3.2.2 Comparing attributes

To compare the value of an attribute with one you provide, right-click on an object in the
tree on the left side of the Search page and select Compare. The Compare option is also
available from the Operations menu. Enter an attribute name and value in the box displayed.
Sodium will ask the Directory whether the entry contains the specified value for that
attribute.

This is useful for checking attributes such as passwords in configurations where the attributes
may not be read, but may be compared as a means of verification.

Note: The attribute value being compared is only visible if you select the Show
option.

3.3.2.3 Security policy

An M-Vault server may be configured with a Security Policy (Section 6.5, “Security labels
and clearance”), in which case Sodium will be subject to whatever constraints the policy
specifies: for example, when you are browsing the Directory tree, the Directory Server will
only return information about entries that your security clearance permits you to see.

Managing the Data

31M-Vault Administration Guide

For any entry that has a security label, Sodium attempts to validate the label against the
DSA’s security policy. Depending on the policy, this can result in Sodium displaying extra
marking data above and/or below the entry’s contents, as shown in Figure 3.5, “Security
policy warning message”. The Security Policy determines the value of the text, its colour,
and its tooltip (in the example shown, “DEMO-UK UNCLASSIFIED”, green, and
“DEMO-UK UNCLASSIFIED”, respectively). Should Sodium encounter an error when
processing Security Policy information (for example, if an entry contains a Security Label
which refers to a Policy other than that for which the DSA is configured), then a warning
will be displayed before the entry is shown, and a warning label will be shown above and
below the entry itself.

Figure 3.5. Security policy warning message

3.4 Modifying entries

Select an object in the tree on the left of the page to see display the values of its attributes
in the area on the right. The way in which the information is displayed depends on the view
that has been selected.

If an entry is successfully changed in some way (modified, renamed, or moved), Sodium
will automatically update all the other views that also show that entry.

3.4.1 Changing the value of an attribute

Most of the attributes displayed in the right-hand part of the Browse page are editable. If
Sodium determines (using the schema) that a particular attribute may not be changed by
users, it will prevent it from being edited.

• The Apply button is disabled until a change is made to any of the values. If you click
Apply, Sodium will to attempt to modify the Directory entry with the changes.

• The Cancel button will discard all the changes made to an entry, and will re-read it from
the Directory server.

3.4.1.1 Highlighting errors

You will not be able to apply changes (the Apply button will remain disabled) if mandatory
attributes in the entry are empty, or if a value entered for an attribute is invalid. To enable
you to identify the problem attribute(s) a red icon is displayed:

• On the tab of any page containing an affected attribute

• Alongside the attribute

Managing the Data

32M-Vault Administration Guide

• Alongside the Apply button.

Note: Sodium can perform additional checks on the contents of certain attribute
values, and will draw yellow warning icons as well as change the background of
any fields which fail these checks to yellow.

3.4.1.2 Undoing changes

You can undo changes to an attribute value by selecting one of the following from the Edit
menu:

• Revert attribute, then Revert attribute to last valid values

• Revert attribute, then Revert attribute to original values

You can also see these options by right-clicking on the field.

3.4.2 Changing an entry’s object class

To modify the object classes associated with an entry, click Object classes... below the
entry’s attribute values.

The editor used to modify object classes can display two columns: a list of templates and
a list of object classes.

• Both columns are shown in when you are using the Full view (see Figure 3.6, “Object
class editor showing both the templates and the object classes”).

• Only the templates column is displayed in Template view.

• Only the list of object classes is displayed in all other views.

Managing the Data

33M-Vault Administration Guide

Figure 3.6. Object class editor showing both the templates and the object
classes

A template or object class currently being used in the entry is indicated by a tick in the box
to the left of its icon and name.

• To add an unused template or object class, click it. A‘+’ will appear on the icon, indicating
it will be added when you apply the changes.

• To remove a currently used template or object class, click it. A‘–’ will appear on the
icon, indicating it will be removed when you apply the changes.

Object classes are often related – for example the inetOrgPerson object class is a subclass
of the organizationalPerson object class. Sodium is aware of these relationships and will
automatically add any required object classes when necessary.

To see which object classes are related to one you want to use, hover the mouse over it:

• Required object classes are shown with a blue icon.

• Optional object classes are shown with a green icon.

In the Full view (as shown in Figure 3.6, “Object class editor showing both the templates
and the object classes”) a list of object classes is shown on the right. In this list, structural
object classes are displayed in bold type and auxiliary object classes are displayed in italic
type. Selecting object classes will automatically cause the appropriate templates to be
selected.

3.4.3 Entering data containing line breaks

Most string entry fields in the entry editor start off as a single-line field, but many of them
can be switched to a multiple-line mode. To do this, either:

• Paste multi-line text into the field.

Managing the Data

34M-Vault Administration Guide

• Select Switch to multiple-line field from the Edit menu, or from the menu shown when
you right-click on the field.

Note: To enter a line-break in a multi-line field, use the Return key on your
keyboard.

Multi-line mode is also used if the existing field contents contains unprintable characters
or line breaks. In the multiple-line mode, escape sequences are used: “\\” for backslash,
“\r” for carriage-return, “\n” for line-feed, and “\” plus two hex digits for undecoded UTF-8
bytes. The hex form may be used both for invalid UTF-8 fragments and also for valid
UTF-8 characters that are unprintable.

Buttons to the right of the field allow switching between UNIX (LF) and DOS (CR-LF)
line-ending views and also conversion of line-endings between the two systems. (DOS is
the convention used on Windows systems.)

Note: Switching the view does not change the underlying data in any way; it only
determines which control sequence is shown as a line-break in the field. Any
remaining control sequences are shown using escapes. Conversion does modify
the underlying data, mapping LF to CR-LF or CR-LF to LF depending on the
direction of conversion.

3.4.4 Moving and renaming

When you rename an entry, you change its RDN – the name that uniquely identifies it in
its current location. When you move an entry, you change its DN – the name that uniquely
identifies it within the tree. This means you cannot:

• Move an entry to a location where there is already another entry with the same name.

• Rename an entry if there is already an entry in the same location with that name.

Caution: If you move or rename an entry, you may invalidate the values of some
attributes if they are based on a DN that included the RDN of that entry. Renaming
or moving anything other than a leaf entry – one that does not have any subordinate
entries – is likely to affect a number of other entries. You can identify which
values have been affected by checking referential integrity (see Section 3.9,
“Checking the referential integrity of attributes”).

3.4.4.1 Moving an entry

To move an entry to a new location in the tree:

1. Select the entry (either from the Browse page or following a search).

2. Drag and drop it into its new location.

Note: If you are moving an object in a large well-populated Directory, you may
find it easier to drag and drop the entry you are moving between two different
Browse pages in different windows.

3.4.4.2 Renaming an entry

To rename an entry, either:

• Right-click on the entry and select Rename from the menu displayed

Managing the Data

35M-Vault Administration Guide

• Select Operations → Rename from the menu.

Note: If you rename an entry from a Search page, you will see a red warning
triangle telling you that the entry cannot be found – that is because that search
page was based on the object’s old name.

3.5 Adding single entries to the Directory

There are three ways to add new entries using Sodium:

• The Add another... button will create a new entry as a sibling of the current one, using
the same template and options as the current entry. This conveniently allows multiple
similar entries to be created.

• The Clone... button will create a new entry as a sibling of the current one, using the same
template and options, with all the attributes (except the naming attribute) initially set to
values copied over from the current entry.

• The Add below... menu option (displayed by right-clicking on an object) invokes a
wizard which lists all the templates configured in Sodium, which generally represent
the structural object class of the desired entry. Some templates have some related
(optional) parts which can also be selected; these optional parts generally represent the
auxiliary object classes of the desired entry and are shown when you click Next.

Sodium prompts for the value(s) to use as the name for the new entry.

Sodium can check for some data entry errors and will not allow you to save your new entry
until you have corrected them: see Section 3.4.1.1, “Highlighting errors”, for details.

If you need to enter information containing line breaks, see Section 3.4.3, “Entering data
containing line breaks”, for instructions.

Managing the Data

36M-Vault Administration Guide

You can undo changes: see Section 3.4.1.2, “Undoing changes”, for details).

Note: If the entry you are adding is to be a context prefix, you must select the
Create as a context prefix option: you cannot change an existing entry to make
it a context prefix.

3.6 Deleting entries

You can either delete a single entry or a whole section of the Directory tree.

3.6.1 Deleting a single entry

To delete entries that do not contain any other entries:

1. Select the entry in either a Search or a Browse window.

2. Either right-click and select Delete or select Operations → Delete from the menu.

Note: You will be asked to confirm that you want to delete the selected entry.
You cannot delete entries that have subordinate entries in this way. You would
have to either delete all the subordinate entries or move them to another location
first.

3.6.2 Deleting an entire subtree

To delete an entire subtree (an entry and all the entries it contains):

1. Select the entry in either a Search or a Browse window.

2. Either right-click and select Bulk tools → Delete subtree or select Operations → Bulk
tools → Delete subtree from the menu.

A window is displayed enabling you to delete the selected entry and all its subordinate
entries.

A warning message is shown, which also gives you the option of deleting the selected entry
and any subordinate entries or just deleting its subordinate entries.

3.7 Collective Attributes

Sodium provides a Collective Attributes View which can be used to view or modify
collective attributes. This view is enabled for any session where you have enabled Sodium
with GUI Management Features enabled (see Manager tab of Session settings).

Collective Attributes View is associated with Administrative Points, and so the Collective
Attributes View highlights existing Administrative Points in the DIT. An Administrative
Point may have an arbitrary number of Collective Attribute subentries, each of which has
a unique name. It is also possible to exclude collective attributes from appearing in a
particular entry through use of the collectiveExclusions operational attribute using the

Managing the Data

37M-Vault Administration Guide

User View in Sodium. Such entries with exclusions are also highlighted in the Collective
Attributes View.

Each Collective Attribute subentry has a subtree specification, which determines the scope
of the collective attribute subentry within the Administrative Area, and user attributes of
the subentry which define the collective attributes of the entry collection.

Existing Collective Attribute subentries are shown on the right-hand side of the window.
Each existing subentry is identified by the subentry name, and you can view, modify, delete
or add new Collective Attribute subentries by clicking on the appropriate options.

3.7.1 Finding a suitable Administrative Point

An Autonomous Administrative Point may define collective attributes without explicitly
making it a Collective Attribute Administrative Point. It can be partitioned in order to
deploy and administer collective attributes by defining Collective Attribute Specific and
Inner areas. This can be done by selecting the Collective Attribute Administrative Point
option. Note that a Specific Administrative Area defined for the purpose of collective
attribute administration may be further divided into nested inner areas for the same purpose.

If you want to set up collective attributes at a location in the DIT which is not currently an
Administrative Point, then you can select the appropriate entry in the DIT and use the
Create an Admin Point at this entry option. Note though that you may be able to achieve
a similar effect by creating a Collective Attribute subentry on an Administrative Point at
a higher level in the DIT, and using a subtree specification to specify that it should affect
only entries in a portion of the subtree.

3.7.2 Managing Collective Attribute Subentries

Once a suitable Administrative Point has been selected (see Section 3.7.1, “Finding a
suitable Administrative Point”), Collective Attribute subentries can be created.

To create a new subentry, click on the Add Collective Attribute Subentry link. Once you
have provided the name of the new subentry, Sodium will display a subentry view that
allows you to configure its subtree specification and attributes.

Managing the Data

38M-Vault Administration Guide

By default, the subtree specification will be set to include all entries in in the subtree, but
you are able to edit the subtree specification to restrict which parts of the subtree, or which
types of entry in the subtree are affected.

The right-hand side of the window for the subentry view shows a list of collective attributes
and their values. You can add new attributes and values; Sodium will check that that any
new attributes you add are collective attributes (for example, you may add c-TelexNumber,
but not telexNumber, since the latter is not a collective attribute).

Managing the Data

39M-Vault Administration Guide

Use Apply to commit changes and create the new collective attribute.

An existing Collective Attribute subentry may be modified by using the Browse link, which
opens the subentry view where you can remove or modify existing attributes, add new
ones, or edit the subtree specification.

3.8 Importing and exporting entries

Sodium provides a number of tools that operate on a potentially large number of Directory
entries, that is, in bulk.

Note: This section only covers the use of Sodium to update or retrieve data over
protocol from running DSAs. Other tools exist for importing and exporting data
directly to and from the on-disk databases. Those tools are described in
Section 4.8.2, “Exporting and Importing Data”.

You can populate your Directory with data extracted from another system, or export data
for backup purposes or to provide information to another system using these tools.

Note: The tools may result in large numbers of entries being sent to or from the
Directory Server, and so may be constrained by server-defined limits. In this event,
Sodium will attempt to complete the requested operation and will also log an
appropriate warning message in a Log tab.

Sodium imports data from and saves data to the LDIF format.

3.8.1 LDIF files

This section gives you a brief overview of the format of LDIF files, so you can view and
understand a file’s contents. For a detailed description of the format, consult RFC 2849.

Managing the Data

40M-Vault Administration Guide

3.8.1.1 Contents of an LDIF file

An LDIF file consists of a series of records separated by carriage return/linefeed, and a
record consists of a sequence of lines describing a Directory entry. These may take one of
the following forms:

attribute name:[value]
attribute name::[base64-encoded value]
attribute name:<[url]
attribute name;binary::<[base64-encoded ASN.1-encoding]

Note: A space is required before the value. For details of the permitted format
of LDAP attribute names, consult RFC 4512.

Comment lines must start with #, and lines which continue from the previous line (wrapped
lines) must begin with a space. A line can be wrapped by inserting carriage return/linefeed.

3.8.1.2 Sample of an LDIF file

The example below is a simple LDIF file which adds two entries to the DIT. The entry for
Adam Alexander is added at the level o=Widget Ltd, c=GB and the entry for Harry Hanson
is added at the level ou=Accounting, o=Widget Ltd, c=GB.

This example starts with a comment line and includes a wrapped line in the second record.

#New entries for July 2007

dn: cn=Adam Alexander, o=Widget Ltd, c=GB
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: Adam Alexander
sn: Alexander
userid: aa
telephonenumber: 555-0442
rfc822Mailbox: aa@Widget.com

dn: cn=Harry Hanson, ou=Accounting, o=Widget Ltd, c=GB
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: Harry Hanson
sn: Hanson
userid: hh
telephonenumber: 444-6053
rfc822Mailbox: hh@Widget.com
description: Harry joined the LM project in July 1997. His
 manager is J. Johnson.

The following is an example of a line which contains a base64-encoded value.

description:: SGFycnkgam9pbmVkIHRoZSBMTSBwcm9qZWN0IGluIEp1bHkg
 MTk5Ny4gSGlzIG1hbmFnZXIgaXMgSi4gSm9obnNvbi4=

The following illustrate lines which include a URL to an external file. URLs in LDIF files
are expected to be file: URLs without specifying a host.

External file references in LDIF files on Unix

Managing the Data

41M-Vault Administration Guide

jpegphoto:< file:///file/path/to/harry.jpg

External file references in LDIF files on Windows

jpegphoto:< file:///Program Files/Isode/myphoto.jpg

3.8.2 Exporting entries to an LDIF file

Note: You should back up the data in the Directory regularly. A simple way of
doing this is to export all of the data to LDIF files. More sophisticated backup
techniques are described in Section 4.8, “Backup and recovery procedures”. You
must connect (bind) to the Directory Server as Data Manager in order to have the
permissions required to backup the data, unless authority has been delegated.

1. In either a Browse or a Search page, select the entry in the DIT that contains all of the
information you want to export.

2. Either:

• Right-click object and select Bulk tools → LDIF dump... from the menu displayed

• Select Operations → Bulk Tools → LDIF dump... from the menu.

The LDIF Bulk Dump Settings window is displayed.

3. Specify the location to save the LDIF file containing the information.

4. Choose whether to export the whole subtree or whether to limit it to a certain depth. If
the Subtree to a depth of option is selected, Sodium will limit the dump to just
immediate children of the selected entry (depth is 1) or grandchildren (depth is 2), and
so on. Otherwise all subordinate entries are included.

• If the Directory supports paged results, then there is no limit on the size of the subtree
that may be dumped.

• If the Directory does not support paged results, then the operation may be limited by
administrative limits imposed by the Directory Server. A warning will be generated
if an administrative limit has been hit.

5. Specify the types of entry to be included.

6. Click OK.

Caution: The resulting LDIF file may contain readable passwords. You need to
ensure the LDIF file is given adequate file system protection.

3.8.3 Importing entries from an LDIF file

Entries must be in the correct format in the file – any errors will be displayed on a Logs
page at the end of the process.

Managing the Data

42M-Vault Administration Guide

1. In either a Browse or a Search page, select the entry in the DIT that you want to contain
the information you want to import.

2. Either:

• Right-click object and select Bulk tools → LDIF load... from the menu displayed

• Select Operations → Bulk Tools → LDIF load... from the menu.

3. Click Browse... and locate the LDIF file containing the entries you want to upload.

Examples of the DNs of the entries in the file are shown.

4. You have the option of modifying the structure of the subtree(s) containing the data
being imported.

a. Select Load to alternative location in tree and choose to substitute some of the
RDNs with alternative values.

b. Select the number of levels you want to change.

c. Type the new values.

d. Select Correct loaded DN attribute values to convert any values referencing the
original DNs to the new DNs within the LDIF file.

The effect of your substitutions is shown immediately below this section.

Note: The area containing the fields for you to specify substitution values is
not visible unless Load to alternative location in tree has been selected.

5. Decide how you want errors to be handled.

6. Click OK to begin importing the data.

3.8.4 Loading files into specific attributes

You can load files into specific attributes within entries. These may be certificates, CRLs,
JPEG images, text files, or any file you wish to load. For example, you may add new photos
to a large number of existing person entries, or bulk-load certificates into the Directory,
creating entries automatically if they do not already exist.

Sodium needs to be able to determine which entry each file should be associated with. For
example, if you are uploading photographs of your staff, ensure the filenames match the
common name (the identify value) of the person.

There is special support for extracting information from certificates and CRLs.

To specify the settings to be used, select Operations → Bulk Tools → Bulk file load...
from the menu.

Managing the Data

43M-Vault Administration Guide

1. To specify which attribute will contain the file after import, either select it from the
preset list or type the LDAP attribute name directly into the field.

2. Specify the type of data held in the file. This may be BER or binary data, or text in one
of a number of different character sets. In the case of text, the characters will be converted
to UTF-8, as used in the Directory.

3. In From this folder, browse to the folder containing the files. You can optionally choose
to include sub-folders if the files are organized in that way.

4. List the file extensions of files that contain the data you want to upload.

If no file extensions are specified, then all files will be read, and any that contain a valid
value for the selected attribute type will be loaded.

5. Specify how the DN of the entry whose attribute will be loaded with the data will be
identified or created by selecting an option from the list. Choose a method that is
appropriate for the type of data you are uploading.

6. If an entry with the generated DN does not exist, one will be created. Specify the object
class to use for this newly-created entry.

7. Select the preferred merging behaviour to be used when there are already values for the
attribute in the entry.

Single value newest is only applicable when loading certificates or CRLs. It determines
whether the existing or imported version is newer by comparing issue issue dates on
certificates or CRLs. It does not work for other types of data.

8. Click OK to upload the files.

Managing the Data

44M-Vault Administration Guide

3.9 Checking the referential integrity of
attributes

Some attribute values may contain DNs, referencing another Directory entry. For example,
an entry representing a person that is using the Internet Organizational Person template
may have values for Manager and Secretary, which will be DNs of other entries in the
Directory.

When entries are added individually, these DNs are selected from those available so are
valid, but when entries are added in bulk these DNs are written directly to the attribute
value. To check that DNs held in attribute values actually exist in the Directory:

1. In either a Browse or a Search page, select the entry in the DIT that is at the top of the
subtree you want to check.

2. Either:

• Right-click object and select Bulk tools → Referential integrity... from the menu
displayed

• Select Operations → Bulk Tools → Referential integrity... from the menu.

3. Specify how you want the results to be presented.

4. Specify how much of the Directory you want to check, starting from the selected entry.

5. Click OK to start the integrity check.

If the Subtree to a depth of button is selected, Sodium will limit the check to just immediate
children of the selected entry (depth is 1) or grandchildren (depth is 2), etc. Otherwise all
subordinate entries are checked.

3.10 Managing identities

An X.509 certificate and the corresponding key are required to perform strong authentication
using Sodium and other applications. This combination of certificate and private key is
called an “identity” by Sodium. Identities are stored on disk in a standard file format called
PKCS#12, which is encrypted.

Managing the Data

45M-Vault Administration Guide

3.10.1 Generating a certificate request

X.509 certificates are issued by a Certificate Authority (CA) in response to a Certificate
Signing Request (CSR). Sodium provides a convenient way to generate CSRs and keys,
and to create identities from certificates that are returned from a CA.

To generate a certificate signing request:

1. Select an entry in the tree view.

2. Select X.509 → New X.509 Identity from the menu.

The starts a Create Identity wizard. The wizard provides default values for the key
parameters and CSR subject name, based on the selected entry. The subject name is
derived from the selected Directory entry, although you can change this to any legal
DN.

3. Depending on what attributes are found in the entry, various subjectAltName values
may be suggested.

Managing the Data

46M-Vault Administration Guide

You may also add arbitrary subjectAltName values as appropriate.

a. Select Create other subjectAltNames.

A new area is displayed, with Add..., Edit... and Remove buttons to the right of it.
If there are no entries in the area, the Edit... and Remove buttons are disabled.

b. Click Add...

c. Select the SubjectAltName Type you want to add from the list.

If you select OtherName, the OtherName Type list is enabled for you to choose
which other name.

d. Type a value for the chosen attribute. Click OK.

The subjectAltName you have created is now displayed and you can edit or remove it
if necessary.

Managing the Data

47M-Vault Administration Guide

4. Click Next.

5. You are now shown the Certificate Request Contents. Click Details to make sure
everything is as required.

Click Next.

6. The certificate request now needs to be passed to a Certificate Authority (CA) for signing.
You have three options:

• Click Desktop to save the request as a file on your desktop, which can then be passed
to a CA.

• Click Save to save the request as a PKCS#10 format file in a location of your choice.
This is useful if you are using Isode Sodium CA to issue certificates and have created
a default location for the CA to collect CSRs and return certificates (see Section 13.3,
“Issuing certificates”).

• Click Copy to copy the request to the clipboard. This can then be pasted into an email
message.

Click Next.

7. You now have two options:

• The CA has provided a certificate: choose this option if the CA is able to issue the
certificate while you are waiting.

Click Next. The wizard will continue as described in Section 3.10.3, “Linking a
certificate to a Directory entry”.

• I will complete this operation later: choose this option to save the information you
have recorded as a “deferred identity”. Deferred identity information is protected by
your passphrase (see Section 3.2.1, “Profile passphrase”) and preserved between
Sodium sessions. You will be able to link the certificate to the appropriate Directory
entry when it is available.

Click Finish to close the wizard and complete the operation later (see Section 3.10.2,
“Continuing to create a deferred identity”). Click OK to acknowledge the message.

Managing the Data

48M-Vault Administration Guide

3.10.2 Continuing to create a deferred identity

To collect certificates that were requested earlier, select X.509 → Deferred Identities
from the menu. Any outstanding certificate requests are shown.

Select the identity that is awaiting a certificate. The filename containing the certificate
request and the date and time it was generated are shown at the bottom of the window. You
can choose to View more details, or to click Next to continue.

You will then begin the process of linking the generated certificate to the entry as described
in Section 3.10.3, “Linking a certificate to a Directory entry”.

3.10.3 Linking a certificate to a Directory entry

After either creating the certificate signing request or locating the deferred identity, you
can link the generated certificate to an identity.

1. Sodium will look for the certificate on your desktop. Click the Change button to look
in another location.

If a certificate is found that matches the request, Sodium will display details of it.

Managing the Data

49M-Vault Administration Guide

2. To complete the creation of an identity, two certificates are required: the one issued by
the CA in response to the CSR, and the CA’s own certificate. If the wizard is unable to
find these certificates, then you will be prompted for their locations. If multiple (non-CA)
certificates are found, you will be prompted to select which one you want to use.

• If you are using Isode Sodium CA then its default behaviour is to write issued
certificates (and a copy of its own certificate) to the same disk directory where it
found the CSR.

• If you are using a third-party CA, or a CA on a different system, you need to copy
the certificates to a disk directory which you then direct Sodium to read.

3. Once both certificates have been found, the wizard will be ready to create the PKCS#12
file representing the identity. How this is done depends on who the identity is for.

• If the identity is one that you (the currently logged in user on this system) are going
to use yourself (for example, to bind using strong authentication to a DSA), then the
PKCS#12 file will be saved in your x509 directory, and protected using your
passphrase.

• If the identity is one which you are creating on behalf of another user, then you are
prompted for the location and name of the PKCS#12 file to be created, as well as the
passphrase to be used to encrypt it. The wizard will prompt you with a suggested
passphrase, which will be displayed on the screen. You will need to give this to the
user whose identity you are creating as it is needed to use the identity after you have
sent or stored the PKCS#12 file.

3.10.4 Creating an Identity for the local DSA

To create an identity for a Directory Server, you should use M-Vault Console. See
Section 5.4, “Configuring the Directory for X.509”.

3.10.5 Managing identities

Sodium allows you to view and delete identities by selecting X.509 → Manage Identities...
from the menu.

A list of identities associated with bind profiles is displayed, enabling you to view details
of an entry or export it to a PKCS#12 file. When exporting an identity, you must provide
a passphrase that will be used to encrypt the PKCS#12 file.

Managing the Data

50M-Vault Administration Guide

You can also Browse PKCS#12 files anywhere on the file system, which may be useful
to examine files which you have previously exported, or to re-encrypt existing PKCS#12
files with a different passphrase.

When browsing PKCS#12 files, you can view the contents of any file by providing its
passphrase (unless it is protected by the current Sodium passphrase, in which case it will
automatically be viewable). An icon is shown next to each file to indicate whether it is
valid or invalid, or that it contains an expired certificate.

3.10.6 Managing PKI attributes

Sodium provides a special view that allows you to manage PKI (Public Key Infrastructure)
attributes. This view is enabled for any session where you have enabled Sodium with GUI
Management Features enabled (see Manager tab of Session settings).

The PKI view highlights the entries with certificates, or that represent Certification
Authorities. The right-hand side of the window displays the PKI attributes (userCertificate
and userSMIMECertificate for an entry; and caCertificate, certificateRevocationList,
authorityRevocationList and crossCertificatePair for a CA entry). These editors provide
the option for loading, saving and removing the PKI attributes.

Note that these editors and the corresponding functionality is also available in the User
View of Sodium, but the PKI View makes it easy to manage the PKI information by
allowing you quickly to locate and view just the relevant entries and attributes.

Managing the Data

51M-Vault Administration Guide

The Create Identity button starts a "Create Identity" wizard which facilitates generation
of X.509 Identity for the selected user entry (see Section 3.10.1, “Generating a certificate
request”).

3.11 Security Information Objects

You can use Sodium to display, create and edit Security Information Objects (SIO): Security
labels and clearances, and the corresponding catalogs.

3.11.1 Setting up a Security Policy

The security policy is represented as an SDN.801c SPIF in the Open XML SPIF format.
Sodium needs to know the name of the Directory entry containing the policy. This entry
will also hold additional security information, such as catalogs of labels and clearances.

The default value for the entry is cn=core,cn=config, which is the M-Vault Directory
Server’s core configuration entry. Although using this entry allows an appropriately
authorized Sodium user to display and edit security information used by the Directory
Server, it is not generally accessible by users: you may therefore choose to use a different
and more accessible, entry.

Note: Policy information for Directory applications, such as M-Link, will typically
be stored in separately entries, such as the main M-Link configuration entry.

The name of the entry holding the SIO Information is configured on by either:

• Specifying it on the Session settings screen (on the Sodium page) when creating or
modifying a bind profile

Managing the Data

52M-Vault Administration Guide

• Modifying the settings for the current session when bound to Sodium. Open Session
Settings by selecting Session → Session settings.... The entry is specified on the Sodium
page.

If you are not using the default entry, you will need to create an appropriate entry to hold
the SIO information; for example, an M-Link Server entry is a suitable entry for holding
SIO information associated with the M-Link Server. To create the entry, right-click a
suitable entry in Sodium and choose Add Below from the menu displayed, then select
Isode M-Link Server from the list of templates. Follow the steps in the wizard to create
an M-Link Server whose DN can be used as the alternate entry for SIO objects.

To configure the security policy, select the entry that is being used to hold the SIO
information and click the SIO tab. Load the security policy XML file using the Load
button. Isode provides sample security policies which are called policy.xml. These can be
found in /opt/isode/share/security-label/example-data (on Unix systems) and C:\Program
Files\Isode\share\security-label\example-data (on Windows systems, by default).

Click Apply to save the security policy in the entry. You will now be able to create Security
Labels and clearances. The above folders also contain sample clearance and label XML
files.

Note: Until you have configured the security policy and clicked Apply to apply
your changes to the entry, the New buttons are disabled.

3.11.2 Setting up catalogs

Security Label and Clearance catalogs are collections of security labels and clearances.
Sodium enables you to create and manage catalogs using the catalog editors on the SIO
tab. If a catalog is available as an XML file, it can loaded using the Load Catalog... button.
Once loaded the editor displays the catalog as a collection of labels or clearances, each of
which can be displayed and edited.

Icons to the left of each catalog name indicate its status:

• Labels and clearances issued under the configured policy are shown with green discs to
the left of their names. If an issued label or clearance contains obsolete elements, a white
cross is displayed inside the green disc.

• Labels and clearances that are issued under a different policy are displayed with an
orange disc to the left of their names.

• Any invalid labels or clearances are marked with a yellow warning triangle.

Managing the Data

53M-Vault Administration Guide

3.11.3 Editing catalogs

Once a label or clearance catalog is stored into a suitable entry, it can be edited. Click
New... to add a new label or clearance to the catalog, or Edit... to edit an existing label or
clearance in the catalog.

3.11.4 Applying a label to an entry

Once a security policy has been configured, a label can be applied to an entry. Labels are
normally held in an operational attribute, so it will normally be necessary to modify the
Sodium session settings to show operational attributes in the Op-Attrs tab. Click Load...
to load a new label from a file (XML or BER formats), New... to create a new label using
the configured security policy or Catalog... to select a label from the label catalog. The
following editor will appear when either the New... or Edit... button is selected:

Managing the Data

54M-Vault Administration Guide

First select a classification from the drop-down list. Selecting a classification may or may
not require inclusion of certain categories. The required categories if any will be displayed
as a list in the Required Categories pane. The Optional Categories pane lists all the
categories in the configured policy from which the user can select certain categories to be
added to the label. The categories which are disallowed based on the selection of a certain
category or the classification will be disabled automatically on the editor. The obsolete
categories will be allowed for editing based on whether Edit obsolete elements is selected
or not.

Selection rules of a category group determine whether it allows selection of single or
multiple categories in the group. For single category selection, the categories are displayed
using radio buttons and for multiple category selection they are displayed as check-boxes.

The markings get updated on the Markings tab when a valid combination of categories
has been selected.

Note: Rules for label editing are based on SDN.801c and are configured in the
security policy.

3.11.5 Applying a clearance to an entry

Once a security policy has been configured, a clearance can be applied to an entry.
Clearances are normally held in an attribute that is part of the sioClearance auxiliary object
class, so it will normally be necessary to add that object class to the entry using Sodium’s
Object classes... button. Then click Load... to load a new clearance from a file (XML or
BER formats), New... to create a new clearance using the configured security policy or
Catalog... to select a clearance from the clearance catalog. The following clearance editor
will appear when either the New... or Edit... button is selected:

Managing the Data

55M-Vault Administration Guide

One or more classifications can be selected from the Security Classifications pane to be
added to the clearance. The Security Categories pane lists all the categories in the
configured policy from which the user can select certain categories to be added to the
clearance. The markings get updated on the Markings tab as and when the clearance is
edited.

3.12 Displaying warnings and errors

Sodium will display warnings and details of errors it finds on a special Log page (shown
in the same area as the Browse and Search pages). If there are no warnings or errors to
show, the Log tab is not be displayed.

Sodium will also append any warnings or errors to the configured log stream(s), which by
default will include the file (LOGDIR)/dua-event.timestamp.log. See Section 11.1,
“Logging” for details on configuring this.

3.13 Customizing Sodium

You can make changes to the way Sodium operates and displays information, and to the
templates that Sodium uses when adding or modifying entries.

Managing the Data

56M-Vault Administration Guide

3.13.1 Changing settings

You determine how Sodium operates – how it searches for entries, whether or not some
entries are displayed and the views that are available – as part of a bind profile.

You can modify any of these options on a temporary basis by editing them within a session.
Select Session → Session Settings from the menu, make any changes, and click OK. The
next time you start Sodium, your settings will be back to the way they were.

If you want your changes to become the new defaults, you have to make them to the bind
profile. You can do this when starting Sodium or you can select Session → Bind →
Manager from the menu, then select and modify the profile. The steps are the same as
those shown in Section 3.2.2, “Binding to the Directory using Sodium”.

3.13.2 Creating and modifying templates

When installed, Sodium provides all the templates that you will need for most Directory
applications. You may decide that you need to modify or supplement these, especially if
you have defined your own object types or attributes. Full instructions for configuring
Sodium templates are provided in Appendix D, Customising Sodium.

Managing the Data

57M-Vault Administration Guide

Chapter 4 System Management
This chapter explains how to use M-Vault Console to check and change the configuration
of a Directory Service. It also covers standard operational tasks and performance tuning.

Note: If you prefer, you can use the Dmish scripting interface to carry out the
tasks described in this chapter (see Appendix H, Dmish Scripting Interface). This
may be useful if you have a lot of repetitive work to do. However, if you are new
to the M-Vault Server you are advised to read this chapter first, as it gives you
general advice on maintaining the Directory Service and refers at specific points
to other relevant chapters.

4.1 Starting M-Vault Console

To carry out any of the changes, you must first:

1. Log in to the local Directory Server account.

2. Start M-Vault Console.

3. Connect to the Directory Server to which the changes should be applied, as described
in Section 4.3, “Opening a management connection”, giving the Server Manager’s name
and password.

Note: If the Directory Server is not already started, you can start it using M-Vault
Console (see below).

4.1.1 M-Vault Console’s use of Bind Profiles

M-Vault Console maintains a set of Bind Profiles (see Section 2.1.3, “Using bind profiles”)
corresponding to all the DSAs that it knows about. These fall into two categories:

• Managed DSAs - these are servers which M-Vault Console is involved in managing,
and knows how to connect to.

A bind profile for a managed DSA will contain its address as well as information about
on how to connect and authenticate to it. Bind profiles for managed DSAs are visible in
Sodium’s list of bind profiles because Sodium can use the same information to connect
to the DSA.

• Known DSAs - these are servers which M-Vault Console doesn’t manage but needs to
know about because they are referred to by one or more managed servers.

A bind profile for a known DSA contains the DSA’s address, but does not contain
information on how to connect and authenticate to it. Known DSAs are not visible when
running Sodium.

M-Vault Console always assumes that you are managing at least one DSA, so you must
encrypt your Bind Profile file (because the bind profiles for managed DSAs contain
authentication information). This means that whenever you run M-Vault Console, you have
to give the passphrase you used to encrypt the Bind Profile file.

When performing tasks that require you to specify the address of a Directory Server,
M-Vault Console displays a drop-down box that lets you choose from a list of all bind
profiles (both managed and known) that might be appropriate for the operation in question.

System Management

58M-Vault Administration Guide

For example, when creating a new shadowing agreement, you will be asked to choose
which DSA the shadow agreement is with.

For situations where there is no bind profile for the DSA in question, choosing the option
<Other directory server...> opens the Add known Directory Server dialog box, which
allows you to create a new “known” bind profile.

4.2 Starting the Directory Server

4.2.1 Platform Specific Service Management

M-Vault services are managed using systemd on Linux and the platform system service
management tools on Windows. See Appendix F, Running as an OS Service for details.

4.2.2 Isode Management Tools

You can start or stop a local Directory Server, that is a Directory Server which is resident
on the same host as M-Vault Console, using:

• M-Vault Console – select the server you want to start and click the Start (or Stop) button
on the toolbar.

• The Isode Services Manager (Windows only).

From the Start menu, open the Isode program group and select Isode Services Manager.
You will have to run this option as an administrator. Select the server you want to start
and click Start.

4.3 Opening a management connection

Before you can perform operations (management or otherwise) on a Directory Server, you
must connect to it.

1. From the M-Vault Console window, select the profile name associated with the server
you want to manage and click Connect.

2. The <Profile Name> – M-Vault Console window opens (see Figure 4.1, “The M-Vault
Console Managing window”), showing the name of the profile in the title bar.

System Management

59M-Vault Administration Guide

1.

2.

Note: To close the connection to a Directory Server, you select Close from the
File menu.

4.3.1 Creating a new management connection

If the Directory Server you want exists but is not listed, you can create a profile for it.

1. Click Create... and then select New Bind Profile from the menu. The Bind Profile
Details window opens and a wizard will guide you through creating a new bind profile.

2. Choose whether this a Managed server (you want to be able to configure it using
M-Vault Console) or a Known server (your Directory Server needs to connect to it,
but you do not manage it).

Click Next.

3. As you work through the wizard, you need to specify:

• The Hostname of the Directory Server

The default ports used for X.500 (DAP) and LDAP connections are shown – these
can be edited if necessary.

If you need to specify the full presentation address, see Section 2.2.3.3, “Specifying
a presentation address”.

• The Directory Server DN (see Section 2.2.3, “Creating a Directory Server”)

• A Display Name to enable you to recognise this profile.

4. Click Finish.

4.4 Overview of M-Vault Console

Note: This section contains a general overview of M-Vault Console. Instructions
for carrying out specific tasks using it are given in the appropriate sections.

The <Profile Name> – M-Vault Console window opens when you connect to a Directory
Server. The full name of the window includes the name of the profile; for example, if the
profile is called “MyProfile”, then the window will be called MyProfile - M-Vault Console.

System Management

60M-Vault Administration Guide

A typical view of M-Vault Console is shown below. The numbers are used in the explanation
that follows.

Figure 4.1.The M-Vault Console Managing window

1.

2.

3.

4.

5.

1. The title bar at the top of the window tells you which profile is currently being managed.

2. The three options in the tool bar are:

• Create - this contains six options, each of which launches a wizard or opens a box
to create the appropriate item:

• Supplier Agreement – see Chapter 8, Shadowing.

• Consumer Agreement – see Chapter 8, Shadowing.

• Failover Configuration - see Chapter 9, High Availability.

• Failover Mirror - see Chapter 9, High Availability.

• Database – see Section 4.6, “Database configuration”.

• Peer Configuration – see Section 7.4, “Securing connections between Directory
Servers”.

• Log Stream – see Chapter 11, Monitoring the Directory.

• Remove - enables you to delete a configuration item that is no longer required.

• Refresh – repopulates the pages with the most recent details from the Directory
Server.

3. The main areas for which configuration information is displayed, corresponding to the
Create options listed above plus Configuration (general configuration of this Directory
Server).

4. The individual configuration items in the selected area.

5. Details of a selected individual configuration item. Depending on the item selected, this
area may contain a set of tabbed pages.

System Management

61M-Vault Administration Guide

4.5 General configuration of the Directory
Server

The Configuration page holds general configuration information about the Directory. The
only configuration items described in this section are Address and Operation. All others
are described in relevant chapters as listed below:

• Superior Knowledge is described in Chapter 7, Connecting Directories.

• SASL, TLS, X.509 and Password Policy are described in Chapter 5, Authentication.

• Shadowing is described in Chapter 8, Shadowing.

• Failover is described in Chapter 9, High Availability.

4.5.1 Changing address information

Current address information for the Directory Server is displayed on a page very similar
to that used when creating a Directory Server or creating a bind profile to connect to one.

The hostname or IP address of the server holding the Directory is shown, along with the
port numbers it is listening on.

• Existing connection details can be changed by selecting them and clicking Edit... or by
double-clicking them.

• Connection details for other protocols can be added by clicking Add... and completing
relevant details.

• Unwanted connection details can be removed by selecting them and clicking Remove.

• Presentation, Session and Transport selectors can be specified by selecting an address
type and clicking Selectors... (see Section 2.2.3.3, “Specifying a presentation address”
for details).

• Advanced... enables you to view or edit the presentation address as a string.

Caution: Changing this information is changing the details of the actual Directory
Server. Modifying port numbers, for example, will mean that any bind profiles
using previous numbers will no longer function.

Note: Changes made to the Directory Server’s address will only take effect after
the Directory Server has been stopped and re-started.

4.5.2 Operation configuration

The configuration in this section defines some of the operational parameters for the Directory
Service.

System Management

62M-Vault Administration Guide

The following options can be viewed and changed using this page:

• Administrative limits

• Size limit: the maximum number of entries to return in response to a List or a Search
request, if the requesting Directory does not specify a limit.

• Look through limit: the maximum number of entries to be considered for List or
Search requests. Use this to balance time against how comprehensive a search should
be.

• Time limit: the maximum elapsed time (in seconds) within which the results of a List
or a Search request must be returned. Set this to a value that will prevent an
unreasonable amount of time being spent on one operation.

• Search

The minimum depth at which a search may be started defaults to 0 (the root of the
Directory). It may be set to a lower level if you know that DUAs are unlikely to require
information from the higher levels: this will save search time.

• Chaining

You can prohibit chaining at all (No chaining), can specify that it is only to be carried
out using either the LDAP or DSP protocols, or that either protocol can be used but there
is a preferred order.

4.6 Database configuration

Entries held by the server are stored in one or more databases. Datbases are also referred
to as GDAMs, where GDAM stands for Generic Database Access Module. A Directory
instance can contain entries in more than one naming context. Multiple locally mastered

System Management

63M-Vault Administration Guide

naming contexts can be stored in a single database. However, this is not true of shadowing
where a shadowed naming context must make exclusive use of the storing database.

M-Vault's current implementation is IMGDAM, an in-memory approach where all directory
information is loaded into memory at start up. The information consists of a set of snapshots
of the data, together with a log of changes made. The server can create new snapshots at
configurable times (periodically, when a certain number of changes have been made and/or
at server shutdown time).

The Databases page shows details of all databases currently configured for this Directory
Server. A list of databases is shown on the left side of the page, and the configuration
information for the selected database is shown on the right.

4.6.1 Creating a database

To create a new database:

1. Click Create and select Database from the menu displayed.

2. Give the database a name and then click OK.

You can subsequently modify the database configuration, and the options available are
described next.

4.6.2 Configuring the in-memory database (IMGDAM)

This GDAM holds all data in main memory. Data is persisted on disk by holding a number
of recent snapshots of the data and a set of transaction logs. Snapshots consists of a number
of data files, each comprising some number of directory entries. At startup each data file
is loaded to build up the full in-memory representation. The changes held in the transaction
log are then applied to the in-memory snapshot to bring the data up to date. Due to this
there may be some delay between the server being invoked and becoming available, though
there are configuration options that permit the manager to optimize initial loading for the
system in use.

Configuration of this database type is held on three sub-pages: File handling, Housekeeping
and Indexes.

Figure 4.2, “Configuring the in-memory database” shows the in-memory database
configuration screen.

System Management

64M-Vault Administration Guide

Figure 4.2. Configuring the in-memory database

• The File handling page is used to specify how data is stored in a snapshot and also how
it is loaded at startup.

• Preload threads enables you to specify the number of threads used to perform data
loading at startup. If the full data consists of multiple data file then parallelisation will
reduce the time it takes the server to load the data to memory and so the time it takes
to come online. If this value is not set the server will use a number corresponding to
the number of online CPUs.

• Entries per file option specifies the number of entries stored in each data file. The
fewer entries stored in each file the greater the scope for initial load parallelisation.

• The Housekeeping is used to specify how often database snapshots are written to disk.
The process of creating new snapshots is known as checkpointing. Checkpointing can
be configured to take place periodically, at specific times or when the server is shutting
down. Note that if a checkpoint interval is provided then the specific schedule is ignored.
Checkpointing is explained in more detail in Section 4.6.3, “Checkpointing”

• The Indexes page lets you manage the way that the data is indexed. By default, a single
index is created on the Attribute Type of mail (email address). Indexing is explained
in more detail in Section 4.6.4, “Database indexes”.

4.6.3 Checkpointing

Careful consideration should be given to how often snapshots will be generated
(checkpointing). Important factors are:

• The checkpoint operation places additional load on the server and this can be significant
if the number of entries stored in the directory is large and/or the data is subject to large
numbers of changes. Thus where server performance is a priority checkpoints should be
configured to take place at times of least load.

• Large numbers of outstanding changes will cause a delay in server restart, as the DSA
has to process all changes before it can start serving the up-to-date data. Checkpointing
more often will alleviate this.

System Management

65M-Vault Administration Guide

The default configuration is for changes to be incorporated into a new snapshot at 1 a.m.
local time. Backup scheduling should also take the regularity of snapshot generation into
account, i.e. it would make sense to back the server up soon after a new snapshot has been
generated.

4.6.4 Database indexes

The Directory uses indexes managed by M-Vault Console (or Dmish – see the section
called “Adding one or more index objects”) to make single-level and subtree searches
faster. An index holds a list of entries which match each possible value for a given attribute
and search type. Without indexes, for each search request the Directory Server needs to
check each entry in the search scope to determine whether it matches the search criteria.

The value of indexes should be weighed against the cost of maintaining them. In the current
in-memory GDAM implementation all indexes must also be held in memory, and so there
is a trade off between the additional search speed that an index might provide against the
overall process size.

4.6.4.1 Index search types

You can configure one or more attributes to be indexed for equality, approximate and
substring matches. The type of attribute index and the algorithms used to search the database
restrict the filters that can be used to make the search operation more efficient. Using
non-indexed filters means that a search has to look through all of the entries.

• Equality – these indexes match the unique values of an attribute to the identifier of every
entry with that particular value stored in that attribute.

For example, if the database contains four entries with the following values in the
surname attribute: Emmit, Smith, Smith and Jones, then the corresponding index file
will contain Emmit, Smith and Jones, with the Smith index entry mapping to both
Directory entries with an attribute value of Smith.

• Substring – these indexes match substrings to the identifier of entries where the value
of the specified attribute contains that substring. The files named with attr.sub. (e.g.
sn.sub.db) contain mappings for substrings of all values of that attribute used in entries
in the GDAM onto the entry identifiers of the entries which hold those values.

This index is only created is the attribute being indexed has a string syntax
(CaseIgnoreString, IA5String and so on – see Appendix C, Attribute Syntaxes, for more
details).

Initial and final substrings are two characters long; all others are 3 characters long.

• Approximate – these indexes contain unique Soundex mappings of the values of the
specified attribute and match them to the entry identifiers of entries whose values match
the same Soundex code.

• Presence – these indexes map any values for an attribute. The files named with attr.pres.
(e.g. sn.pres.db) contain mappings for any values of that attribute used in entries in the
GDAM onto the entry identifiers of the entries which hold those attributes

4.6.4.2 Adding an index

To add an index:

1. If you are not already connected, connect to the appropriate Directory Server.

2. Click the Databases tab.

3. Select the database to be indexed, then click the Indexes tab.

4. Click Add. The New index window opens.

System Management

66M-Vault Administration Guide

5. Enter the Attribute type that you want to index.

6. Select the Match type you want to use (see Section 4.6.1, “Creating a database”).

7. Click OK.

Note: The index must be built before it can be used. To build the indexes for the
database, click Build indexes.

4.7 Managing configuration files

The operation of the Directory Server is affected in part by a number of configuration files.
This section describes how to maintain these files in a way that enables simpler upgrades
to later releases.

The Directory Server reads in a number of configuration files when starting up. This means
that for changes in these files to take effect, the Directory Server must be stopped and
restarted.

1. The Directory Server initially attempts to read each file from the (ETCDIR) directory.

2. If a file is not found in (ETCDIR) the Directory server next looks in the (SHAREDIR)
for the file.

3. If the file is still not found, the Directory Server will use built-in defaults if appropriate.

This use of two directories permits multiple machines to share common configurations by
sharing the (SHAREDIR) directory, and yet to have local configuration files for each
machine in its(ETCDIR) directory. For example:

• A licence file is local to the machine so is in (ETCDIR).

• Schema shared between machines can be stored in (SHAREDIR).

To avoid problems with M-Vault upgrades overwriting configuration file changes, no actual
configuration files are installed. Instead sample files are installed, which you can copy and
rename to replace the actual configuration file in the appropriate directory. The sample
files all have a .sample extension.

4.8 Backup and recovery procedures

A Directory Server may have one or more database GDAMs. Each of these is held in a
subdirectory of the filestore directory (configuration path) which was specified when the
Directory Server was created (see Section 2.2.3, “Creating a Directory Server”, for how
this is specified in M-Vault Console and Section E.4.1, “GDAM Files”, for details of the

System Management

67M-Vault Administration Guide

files). These database GDAMs should be backed up for security purposes and so that
recovery can be carried out if there is a problem with the Directory.

4.8.1 Backup and recovery of the in-memory GDAM database

The in-memory database produces snapshots of the data at times configured by the server
manager and the server will retain a number of the most recent snapshots generated. The
backup strategy is to copy the most recent snapshot of the data as well as the index
configuration, which is read prior to the user data at startup. Recovery involves rebuilding
the GDAM from the backed up snapshot(s) and configuration files.

4.8.1.1 Backup procedure

Snapshots are held in sub-directories of the snapshots directory and are identified by a
64-bit change sequence number. The snapshot directories are named using the hexadecimal
encoding of that number, e.g. 0000000000006d78. The most recent snapshot is the one
identified by the greatest change sequence number (the filesystem timestamps on the
snapshot directories are also a place to look).

The user data backup procedure is to copy at least the latest snapshot to the backup area.
The simplest strategy is just to copy all available snapshots by performing a recursive copy
of the snapshots sub-directory to the backup area.

It is also necessary to backup the index configuration. This is held in the config sub-directory
of the GDAM directory. Again this should be backed up by performing a recursive copy
of the sub-directory to the backup area.

4.8.1.2 Recovery procedure

First recreate the GDAM directory structure, which is the following directories:

• gdam-dir.

• gdam-dir/config.

• gdam-dir/snapshots.

• gdam-dir/changelog.

The contents of the snapshots and config sub-directories should be copied from the backup
area to the reconstructed GDAM tree. The server can then be restarted.

4.8.2 Exporting and Importing Data

Sometimes it may be necessary to make copies of or load data into the directory using the
LDIF exchange format (see RFC 2849). The following tools exist for importing and/or
importing LDIF data:

• dbulk - Dump or load LDIF data to a database. Single entries or subtrees can be dumped.
The tool cannot currently process LDIF change records.

• dsnapdump - Dump LDIF data from a database snapshot (as found in the
<gdam-dir>/snapshots) directory.

• dlogdump - Dump the GDAM database changelog. The database changelog consists of
the recent changes changes made to the database. The dlogdump tool can dump the
sequence of changed to a file using an Isode specific format or as a sequence of LDIF
change records.

4.8.2.1 Using dbulk to Import and Export Data

The direct to disk bulk data handling facility (dbulk) has three operating modes:

• load Load entries from an LDIF file into a Directory Server’s database.

System Management

68M-Vault Administration Guide

• dump - Dump a portion of DSA database into an LDIF file.

• clean - Remove a subtree from a DSA database.

Caution: Note that dbulk modifying modes (load and clean) - must not be
used while the DSA is running. The exporting mode (dump) can be used while
the server is running.

General limitations to note:

• Any LDIF data used as a source of bulk loading must conform to the schema as dbulk
does not check for schema errors.

• The database GDAM must already exist before bulk loading can be carried out.

• There is no support for file URLs.

• All RDN values are assumed to be present as attributes in LDIF records.

• Only the binary option is supported in LDAP attribute descriptions.

Logging, including errors, goes to the dbulk-event.log log file.

4.8.2.1.1 Using dbulk load

The load option loads LDIF content (noting that change records aren't currently supported)
into the database. To load data enter the following command:

dbulk load -db_directory pathname -ldif filename -user DN
[-maxfail n] [-skip n] [-count n] [-overwrite]

The meanings of the parameters are as follows:

-db_directory pathname

This gives the location of the GDAM database, for example: /var/isode/dsa-db/gdam1

-ldif filename

This gives the name of the LDIF file.

-user DN

This gives the Distinguished Name assigned to creator and modifier attributes in the
database. It is recommended that this be the name of an account with appropriate write
permissions for the entries being loaded, although any syntactically valid DN is
accepted.

-maxfail n

This specifies the maximum number of failed records which should be tolerated. When
this number is exceeded the program aborts. The default is 9. Use 0 to abort on the
first error.

-skip n

This tells the program to skip the specified number of records at the beginning of the
LDIF file.

-count n

This tells the program to process only the specified number of records from the LDIF
file.

Note: The -skip and -count options can be used to process an LDIF file in
chunks, or to process part of an LDIF file which previously failed.

System Management

69M-Vault Administration Guide

-overwrite

This option allows existing entries to be replaced. By default, existing entries in the
database are not overwritten. You will get an error entry exists (nooverwrite):
<dn> for each entry that exists if -overwrite is not set.

Caution: It is possible to overwrite Directory Server configuration entries using
this option. Care must be taken not to overwrite essential configuration data found
in the cn=config subtree.

4.8.2.1.2 Using dbulk clean

The dbulk tool can be used in clean mode to delete entire subtrees. To remove a subtree
from the database, enter the following command line:

dbulk clean baseDN -db_directory pathname [-maxfail n]
[-descendants]

The meanings of the parameters are as follows:

baseDN

This identifies the subtree to be removed (cleaned). The root entry may not be removed,
hence the base may be "" to indicate the root, only in conjunction with -descendants.

-db_directory pathname

This specifies the location of the GDAM database, for example,
/var/isode/dsa-db/gdam1

-maxfail n

This gives the maximum number of failed records which should be tolerated. When
this is exceeded the program aborts. The default is 9. Use 0 to abort on the first error.

-descendants

This removes all the subordinates of the base entry down to the bottom of the tree, but
does not remove the base entry itself.

4.8.2.1.3 Using dbulk dump

The dump mode is used to export single entries or subtrees of entries to LDIF. The command
line is:

dbulk dump baseDN -db_directory pathname [-maxfail n]
[-descendants] [-operational] [-subentries] [-ignore
attribute-type] [-maxthreads n]

The meanings of the parameters are as follows:

baseDN

This identifies the subtree to be dumped (exported). The empty string ("") can be used
to direct dbulk to dump all entries in the database.

-db_directory pathname

This specifies the location of the GDAM database, for example,
/var/isode/dsa-db/gdam1

-maxfail n

This gives the maximum number of failed records which should be tolerated. When
this is exceeded the program aborts. The default is 9. Use 0 to abort on the first error.

-descendants

This dumps all subordinates of the base entry down to the bottom of the tree, excluding
the base entry.

System Management

70M-Vault Administration Guide

-operational

Whether to include operational attributes in the output LDIF.

-subentries

Whether to include subentries, e.g. access control subentries, in the output LDIF.

-maxthreads

The maximum number of threads to use when processing the in-memory database. By
default dbulk will use all available processors.

4.8.2.2 Using dsnapdump to Export Historical Snapshots

While dbulk is used to retrieve the current data, dsnapdump is used to dump one of the
historical snapshots stored in a directory database (see Section 4.6, “Database configuration”
for details of the GDAM database structure). The command line for dsnapdump is:

dsnapdump -s|--snapshot pathname [-l|--ldif filename]

The meanings of the parameters are as follows:

-s | --snapshot pathname

This specifies the location of the snapshot within a GDAM database, for example,
/var/isode/dsa-db/gdam1/snapshots/00000000001f381b.

-l | --ldif filename

The filename to output LDIF to. If this argument is not provided then dsnapdump
will output to the terminal.

4.8.2.3 Using dlogdump to export changes

While dbulk and dsnapdump export the directory content as is, dlogdump exports recent
changes as stored in a directory database changelog (see Section 4.6, “Database
configuration” for details of the GDAM database structure). The command line for
dlogdump is:

dlogdump -c|--changelog pathname [-l|--ldif filename]

The meanings of the parameters are as follows:

-c | --changelog pathname

This specifies the location of the changlog within a GDAM database, for example,
/var/isode/dsa-db/gdam1/changelog.

-l | --ldif

Output in LDIF format to the terminal.

-f | --full

Output raw changes to the terminal. This outputs a full diagnostic dump of the
changelog. Note that the output is not in LDIF format.

System Management

71M-Vault Administration Guide

Chapter 5 Authentication
This aim of this chapter is to explain the authentication mechanisms that can be used with
M-Vault Server.

Note: These mechanisms do not by themselves provide any guarantees of
Directory security but rely on security of the operating systems and hosts on which
the Directory Server(s) and any Directory User Agents (DUAs) run, and in some
cases also on the networks connecting them.

5.1 Security in the Directory

The M-Vault Server provides two kinds of security services associated with network
applications:

• authentication: determining the identity of a communications partner

M-Vault enables authentication of:

• A Directory User Agent (DUA) to the Directory Server, and of the Directory Server
to a DUA, when a DAP or LDAP association is made

• Peer Directory Servers to each other when a DSP or DISP association is made.

• authorization/access control: once the identity has been established, determining what
data and operations may be accessed by that identity.

This is discussed in Chapter 6, Controlling Access.

Authentication level, which relates authentication to access control, is discussed in
Section 5.8, “Authentication levels”.

5.1.1 General security issues

As the Directory Server can be started automatically (i.e. without an operator), there are
certain issues regarding security which you need to consider; for example, it is generally
not possible to request a passphrase at startup, or to obtain random number data from
operator input.

As a result, decisions about the following issues need to be made carefully:

• account selection

• file system access control

• server keys.

The security of the Directory Server relies on file system access controls. This means that
the Directory Server security is only as strong as the login security of the system (which
is usually password-based), including the ease with which a user can acquire the privileges
of another user.

As the data managed by the Directory Server is held unencrypted in the file system, there
is little point in protecting the cryptographic keys any more securely, as a successful attempt
to obtain the cryptographic keys by subverting the file system access control mechanisms
would also allow access directly to the data protected by the cryptographic keys. However,
it is important that the cryptographic keys are not used for any other purpose.

Authentication

72M-Vault Administration Guide

5.2 Introduction to authentication

Authentication is about proving who you are: verifying the credentials of both parties when
establishing a connection between them.

All Directory protocols have a similar binding phase when establishing an association:

1. The initiator (a DUA in DAP and LDAP, or a Directory Server in DSP or DISP) opens
an association and sends its credentials.

2. The responder (always a Directory Server) detects a new incoming association and
receives these credentials.

• If the credentials are invalid, the responder returns an error code and may close the
connection. The only exception is for a DSP initiation, in which case a referral is
returned.

• If the credentials are valid, the responder may send its own credentials to the initiator.
The initiator may wish to check these credentials to ensure it is communicating with
the correct Directory Server.

3. Once the authentication process is complete, an authentication level is assigned (see
Section 5.8, “Authentication levels”).

Note: Authentication provides an assurance at time of use only. Attackers will
be able to subvert an authentication mechanism if they have access to the network
and are able to insert packets which appear to be from the DUA or Directory
Server.

5.2.1 Establishing identity

One of seven kinds of credentials may be used to establish identity, each useful under
different circumstances. The five supported types form the basis of the authentication modes
that can be configured in M-Vault (the authentication mode value associated with each one
is given below).

anonymous
(Authentication mode 0) No information is provided, which means the Directory Server
will not be able to identify the DUA at all. This kind would typically be used when
connecting to a Directory Server which provides public information such as a white
pages service, where modification or access to sensitive data is not possible.

name only
(Authentication mode 1) The Distinguished Name (DN) of the person or service
requesting connection is sent, but without any proof (no password). This kind of
authentication has limited application, but may be useful for providing a name to the
Directory Server.

simple unprotected
(Authentication mode 2) The DN and a password string are sent in cleartext; for
exceptions refer to Section 5.6.3, “Storing passwords in the GDAM”. This method is
widely implemented in DUA and Directory Server products, and provides a level of
security similar to that in FTP and other Internet protocols. It is most suited for
authentication inside a single enterprise, where the Directory Server holds a copy of
all users’ passwords and the network is trusted or is inaccessible to attackers.

Authentication

73M-Vault Administration Guide

simple protected
[Not currently supported by M-Vault.] The DN is sent in cleartext, but the password
is sent in an encrypted form.

strong
(Authentication mode 4) A digitally signed request and response, using X.509
certificates, is exchanged. X.509 certificates are digitally signed with the private key
of a Certificate Authority (CA), which the responder should be able to verify with the
CA’s public key. A token is transmitted with the certificate that contains a timestamp
and a random number, in order to prevent reuse of the transmission. The responder
must be configured to trust the CA that has signed the certificate.

Configuration of X.509 is discussed in Section 5.4, “Configuring the Directory for
X.509”. The advantage of strong credentials is that the initiator does not reveal any
sensitive information by signing, and the certificate can be verified by any Directory
server which has knowledge of the certificate hierarchy. The disadvantage of strong
credentials is that they rely on algorithms which are patented or export controlled in
many countries, and thus are not widely implemented.

external
[Not currently supported by M-Vault.] The credentials are transmitted via some external
protocol.

SASL
Multiple mechanisms are permitted, and some of these mechanisms use a
challenge-response system to avoid passing credentials over the network in the clear.
SASL uses userids instead of DNs, and these must be mapped to DNs using a number
of configurable mapping rules.

SASL is only supported for LDAPv3 DUAs, and provides multiple mechanisms that
can be used to authenticate. Some mechanisms are very weak (e.g. PLAIN and LOGIN)
while others are considered strong (e.g. DIGEST-MD5). Users’ SASL credentials
(“secrets”) are normally held in their Directory entries, but can also be held in external
databases.

Note: These credentials may be carried over an underlying confidentiality transport
layer (for example, TLS) which may affect their treatment. In particular, LDAP
simple credentials over a TLS confidentiality connection may be treated differently
from LDAP simple credentials over a connection without an underlying
confidentiality transport layer.

5.3 Configuring authentication for specific
protocols

Different protocols have different requirements. Many of these attributes can be set using
Sodium by modifying the specified attributes in cn=core,cn=config. More information is
provided in Section E.1.6, “Chaining”, and Section E.1.5, “Shadowing”.

For strong authentication (and signed operations) six more attributes are relevant
(isodeDAPIncludeCertificationPath, isodeDSPIncludeCertificationPath,
isodeDISPIncludeCertificationPath, isodeDAPStrongTokenExpiry,
isodeDSPStrongTokenExpiry, isodeDISPStrongTokenExpiry) which may appear either
in cn=core,cn=config or (for DSP and DISP) in peer-specific entries. These are described
in Section E.1.3, “X.509 Strong Authentication”.

Authentication

74M-Vault Administration Guide

5.3.1 DAP (as responder)

The Directory Server supports anonymous, name only, simple, and (when configured)
strong authentication. To disable some modes, change the isodeDAPAuthModesIExpect
attribute in cn=core,cn=config.

Authentication levels may be degraded from strong to simple by setting
isodeDAPDegradeStrong attribute, and from simple to none by setting
isodeDAPDegradeStrong in cn=core,cn=config.

Passwords are compared against userPassword attributes, possibly in conjunction with
password policy, see Section 5.6, “Password management”.

If strong authentication is configured, the Directory Server can require that all modification
operations be signed using the isodeDSPSignModify attribute in cn=core,cn=config.

5.3.2 LDAP v3 (as initiator)

The Directory Server sends only anonymous binds when initiating LDAP chained
connections.

5.3.3 LDAP v3 (as responder)

The Directory Server supports anonymous, name only, simple, and (when configured)
SASL authentication. To disable some modes, change the isodeLDAPAuthModesIExpect
attribute in cn=core,cn=config. Passwords are compared against userPassword attributes,
possibly in conjunction with password policy, see Section 5.6, “Password management”.

5.3.4 DSP (as initiator or responder)

The Directory Server supports anonymous, name only, simple and (when configured) strong
authentication. To disable some modes, change the isodeDSPAuthModeISend and
isodeDSPAuthModesIExpect attributes in cn=core,cn=config.

Two passwords are used in simple authentication. By default the other Directory Server’s
password is compared against the isodeDSPPasswordIExpect attribute in the
cn=core,cn=config entry. By default the password sent to the other DSA is the
isodeDSPPasswordISend attribute in cn=core,cn=config.

If strong authentication is used, signed operations can be required by setting the
isodeDSPSignArg attribute in the cn=core,cn=config entry, and signed results can be
required by setting the isodeDSPSignRes attribute in the cn=core,cn=config entry.

In addition, chained operation authentication levels can be degraded (reduced) from simple
to none by setting the isodeDSPDegradeSimple attribute in the cn=core,cn=config entry,
and from strong to simple by setting the isodeDSPDegradeStrong attribute in the
cn=core,cn=config entry.

Chained operations will also be degraded by analysing the DSP trace information. Peers
can be marked as trusted by setting the isodeDSPTrusted attribute in the peer entry;
provided all peers in the trace are so trusted this degrading will not happen.

If a peer-specific entry for the other Directory Server is present under cn=config the
attributes are read from there instead.

Note: A Directory Server can receive chained operations even if it is a DSP
initiator. Initiator and responder just indicate which Directory Server created the
connection, not which sends the operations.

Authentication

75M-Vault Administration Guide

5.3.5 DISP (as initiator or responder)

The Directory Server supports name-only (only as initiator), simple and (when configured)
strong authentication. To disable some modes, change the isodeDISPAuthModeISend and
isodeDISPAuthModesIExpect attributes in cn=core,cn=config.

Two passwords are used in simple authentication. By default the other Directory Server’s
password is compared against the isodeDISPPasswordIExpect attribute in the
cn=core,cn=config entry. By default the password sent to the other Directory Server is
the isodeDISPPasswordISend attribute in cn=core,cn=config.

If strong authentication is used, shadow coordinate operations can be signed by setting
isodeDISPSignCoShaUp, shadow update operations can be signed by setting
isodeDISPSignShaUp and shadow update requests can be signed by setting
isodeDISPSignSrShaUp.

If a peer-specific entry for the other Directory Server is present under cn=config the attribute
are read from there instead.

5.4 Configuring the Directory for X.509

For a M-Vault Server to be able to make use of X.509 based strong authentication for DAP,
DISP and DSP operations, it must be configured to have access to at least:

• Its own X.509 certificate, representing the Directory Server itself

• One or more certificates that can be used to form a chain to a “trust anchor” certificate,
which will be that of a trusted Certificate Authority.

When initiating a strong bind (DSP or DISP), the Directory Server includes its certificate
as part of the bind request. The response to that request will include a certificate from the
other Directory Server. In order for authentication to succeed, both Servers must validate
each other’s certificate, using their own trust anchors.

When responding to a strong bind (DSP, DISP or DAP), the certificate received in the bind
request must be validated against the Directory Server’s trust anchor. The bind response
sent by the Directory Server includes its own certificate.

5.4.1 The Directory Server’s own certificate

You use M-Vault Console to create an identity for a Directory Server. The certificate from
the identity does not contain sensitive data, and will be published by the Directory Server.
But an identity also contains a private key, which must not be disclosed. Identities for the
Directory Server are stored in encrypted form on the system where the server is running.
M-Vault Console therefore needs to be running on the same system as the Directory Server
when creating an identity for it, and will not offer the option of creating an identity for any
remote Directory Server that you are connected to.

1. Start M-Vault Console and bind to the Directory Server.

2. Select X.509 from the list of options on the left.

Authentication

76M-Vault Administration Guide

3. Click Create to create an identity for this Directory Server.

Note: You can also click Pick to select an identity that already exists and
associate it with this DSA.

4. Follow the steps outlined in Section 3.10.1, “Generating a certificate request”.

You cannot change the subject DN but all other steps are the same.

5. At the end of the wizard, you are asked if you want to use this identity for TLS as well.

6. Click Finish.

5.4.2 Additional X.509 configuration

The Trust Anchor page automatically shows the trust anchor derived from the Directory
Server’s identity, which cannot be removed. You can, however, add further trust anchors
by clicking the Add button and selecting certificates from the file system. You can also
use Pick to select identities from within the Directory.

Authentication

77M-Vault Administration Guide

Any other certificates that may be used during the certificate verification process are entered
on the Other CA Certificates page, using the same Add or Pick options as before.

Finally, the details of any LDAP Server used to look up certificates and revocation lists
during verification should be listed on the LDAP Server page. You can choose to use the
local server’s details and also whether you want to use the same values for X.509 and TLS.

5.5 SASL authentication

SASL is an Internet standard (RFC 4422) which defines a Simple Authentication and
Security Layer and it is used in several Internet protocols such as SMTP, IMAP, BEEP,
and LDAP. It provides a means of supporting different authentication mechanisms in an
easily extensible fashion.

SASL distinguishes authentication from authorization. This means that it is possible for
some intermediate system to authenticate as one user, but act as some other entity. This is
often called “proxy authentication”.

SASL does not generally use DNs to identify users to the Directory Server. Because DNs
are vital for the Directory Server in the processing of access controls, the use of SASL with
the Directory requires some additional configuration to map SASL userids into DNs. The
M-Vault server supports several different mapping schemes.

In general then, binding using SASL involves the following logical steps:

1. Authentication

The LDAPv3 client specifies a SASL mechanism, some credentials and optionally a
SASL userid, to the M-Vault server. Some mechanisms may require further information
from the client.

Authentication

78M-Vault Administration Guide

If the authentication is successful the connection is associated with a SASL userid.

2. Authorization

The LDAPv3 client may specify that it wants to act as another entity. This is known as
proxy authentication. M-Vault verifies that the authenticated entity is allowed to act as
the other entity.

Normally the authorization identity is the same as the authentication identity.

3. Userid mapping

The authorization identity is then mapped algorithmically into an authorization DN.

4. Verification

The Directory Server verifies that the entry described by the authorization DN exists.

5.5.1 Configuring SASL

Instructions for configuring SASL are given in this section. Reference is made to subsequent
sections for background explanation.

SASL is configured using M-Vault Console.

1. Bind to the Directory using M-Vault Console.

2. On the Configuration page, select SASL from the list of options on the left.

The SASL Configuration pane is displayed, which contains three pages: General,
Generic Mapping and GSSAPI Mapping.

3. M-Vault supports multiple SASL mechanisms, although none is enabled when a Directory
is first installed. To specify which of the available mechanisms are to be enabled and
disabled:

a. Click Edit...

Authentication

79M-Vault Administration Guide

The SASL Mechanisms window opens.

b. Select at least one mechanism from one of the boxes (NTLM is selected in the
Enabled SASL Mechanisms box) and the appropriate arrow button between the
boxes is enabled. See Section 5.5.2, “SASL mechanisms” for information on the
strengths of the different mechanisms.

c. Click the arrow button between the boxes to transfer the selected mechanisms between
the enabled and disabled lists. Click OK.

4. Choose whether anonymous and plaintext SASL connections are allowed or not.

Note: These options only apply to non-TLS connections.

5. Click the Generic Mapping tab if you are going to use generic mapping rules to generate
a SASL user id (see Section 5.5.3, “SASL userid mapping”) or the GSSAPI Mapping
tab if you are going to use those mapping rules (see Section 5.5.4, “SASL GSSAPI
configuration”).

The Generic Mapping page is shown below. On the GSSAPI Mapping page, the first
option is called GSSAPI Rule.

Authentication

80M-Vault Administration Guide

6. Select the mapping rule you want to use.

• Information on the generic mapping rules can be found in Section 5.5.3.1, “Generic
mapping rule – Active Directory compatible”; Section 5.5.3.2, “Generic mapping
rule – domain part search”; Section 5.5.3.3, “Generic mapping rule – two searches”;
and Section 5.5.3.4, “Generic mapping rule – single search”.

• Information on the GSSAPI mapping rules can be found in Section 5.5.4.1, “GSSAPI
mapping rule - Active Directory Compatible”; Section 5.5.4.2, “GSSAPI mapping
rules - Domain Part and Two Searches”; and Section 5.5.4.3, “GSSAPI mapping rule
- Single search”.

7. Select a DN from the Directory to use as the Search Base DN when mapping user IDs
to Directory entries (see Section 5.5.3, “SASL userid mapping”, and Section 5.5.4,
“SASL GSSAPI configuration”). For Generic Mapping, this is stored in the
isodeGenericBase attribute, and for GSSAPI Mapping, it is stored in the
isodeSASLGSSAPIBase attribute.

8. Type the name of the attribute that holds the value that you are going to use to look for
a match to the user part of the SASL id (see Section 5.5.3, “SASL userid mapping”, and
Section 5.5.4, “SASL GSSAPI configuration”). For Generic Mapping, this is stored
in the isodeSASLGenericFullMatchAttr attribute, and for GSSAPI Mapping, it is
stored in the isodeSASLGSSAPIFullMatchAttr attribute.

9. Click Apply to save your changes.

5.5.2 SASL mechanisms

M-Vault supports multiple SASL mechanisms via a plugin system. When the Directory
Server starts up it loads all the plugins installed in (LIBDIR)/sasl2. This makes it simple
to disable certain mechanisms completely (by removing the plugin file and restarting the
Directory Server), or to add additional mechanisms (by copying in the new plugin and
restarting the Directory Server). The mechanisms may be enabled from the Directory server
properties screen using M-Vault Console, as described in Section 5.5.1, “Configuring
SASL”.

Each mechanism supplied has different characteristics that might make it more or less
useful for a given Directory Server.

Table 5.1. SASL mechanisms

SecurityApproachMechanism

Very weakSends plaintext passwords
across the network.

PLAIN

LOGIN

WeakBasic challenge/response, but
vulnerable to server spoofing
attacks.

CRAM-MD5

WeakBasic challenge/response,
using a Microsoft-specific
algorithm.

NTLM

GoodChallenge/response.DIGEST-MD5

StrongerChallenge/response.SCRAM-SHA-1

StrongerTrusted third party (for
example, Kerberos)

GSSAPI

BestClient uses an X.509
certificate

TLS + EXTERNAL

5.5.3 SASL userid mapping

The SASL bind operation passes a DN, which is always ignored, to the Directory Server:
instead, a userid is used by many of the mechanisms. SASL userids have the form:

Authentication

81M-Vault Administration Guide

username@domain, which are represented in the mapping rules below as
<sasluser>@<sasldomain>.

The Directory Server then maps the SASL userid to a DN using the mapping rule specified
by the Directory Server Manager. The following sections describe the parameters shown
by M-Vault Console for each of the different mapping rules.

Note: If a search returns either no results or more than one result, or the entry
corresponding to the constructed DN does not exist, the mapping fails.

Note: The GSSAPI and EXTERNAL mechanisms do not use SASL userids; for
more information see Section 5.5.4, “SASL GSSAPI configuration” and
Section 5.5.5, “SASL EXTERNAL configuration”.

5.5.3.1 Generic mapping rule – Active Directory compatible

This rule can be used to construct a DN that is compatible with DNs used in Active Directory
(AD). The DN is constructed as follows:

<attr>=<sasluser>, <ADglue>, dc=<subdomain>, dc=<subdomain>, <suffix>

where:

• <attr> is the naming attribute used to identify entries in the Directory (for example,
uid) and is specified in Username Attribute

• <sasluser> is the original user portion of the SASL userid

• <sasldomain> is the domain portion of the SASL userid

• <ADglue> is a glue entry (such as cn=Users) to bridge the gap between the information
provided in the <sasldomain> and where AD stores the relevant entries - it is specified
in Container.

• <subdomain> is a sub-domain of the <sasldomain> (the element dc=<subdomain>
is repeated as often as necessary to incorporate all sub-domains)

• <suffix> is optional and provides the remainder of the DN if the sub-domains are not
sufficient on their own to construct an appropriate DN - it is specified in AD DN Suffix
attribute.

For example, if your system is configured so that:

• Username Attribute is set to uid

• Container is set to cn=Users

• AD DN Suffix is set to o=MyCorp, c=US

then the SASL userid of barabash@example.net will map to uid=barabash, cn=Users,
dc=example, dc=net, o=MyCorp, c=US

5.5.3.2 Generic mapping rule – domain part search

This mapping supports holding users with multiple SASL domains in multiple separate
subtrees.

• If <sasldomain> is absent or is the same value as Default Domain, form the DN as
follows:

<attr>=<sasluser>, <search base>

where

• <sasldomain> is the domain portion of the SASL userid

Authentication

82M-Vault Administration Guide

• <attr> is specified in Username attribute and is the naming attribute used to identify
entries in the Directory (for example, uid)

• <sasluser> is the original user portion of the SASL userid

• <search base> is specified in Search base DN

• If <sasldomain> is not the default domain:

1. Search from <search base> for a domain entry (<search result>) where the
value of the <domain match attribute> (specified in Domain attribute) matches
<sasldomain>

2. Use the template <attr>=<sasluser>, <search result>

For example, if your system is configured so that:

• Username attribute is set to cn

• Search base DN is set to o=My Corp, c=US

• Default Domain is set to example.net

then the SASL userid of barabash@example.net will map to cn=barabash, o=My
Corp, c=US

5.5.3.3 Generic mapping rule – two searches

This mapping rule is similar to the domain part mapping rule, except that instead of forcing
all user entries to be directly below the domain suffix, the second option performs a subtree
search under the domain suffix for the user.

• If <sasldomain> is absent or is the default domain, then search from <search base>
for a user entry with <user match attribute>=<sasluser>

where

• <search base> is specified in Search base DN

• <user match attribute> is the attribute used when searching for matches in the
values of <attr>

• <attr>, specified in Username Attribute) is the naming attribute being used to
identify entries in the Directory (for example, uid)

• <sasluser> is the original user portion of the SASL userid

• If <sasldomain> is not the default domain:

1. Search from <search base> for a domain entry (<search result>) where the
value of the <domain match attribute> matches <sasldomain>

2. Search from <search base> for a user entry where <user match
attribute>=<sasluser>

The resulting match is used as the DN.

5.5.3.4 Generic mapping rule – single search

This mapping rule is the most flexible, as it allows users in the same subtree to have different
SASL domains. It does this by searching for the complete SASL userid.

• If <sasldomain> is absent, search from <search base> for a user entry with <full
user match attribute> matching <sasluser>@<default domain>

• If <sasldomain> is present, search from <search base> for a user entry with <full
user match attribute> matching <sasluser>@<sasldomain>

where:

• <sasldomain> is the domain portion of the SASL userid

Authentication

83M-Vault Administration Guide

• <search base> is specified in Search base DN attribute

• <full user match attribute> is the value of isodeSASLGenericFullMatchAttr

The resulting match is used as the DN.

For example, if your system is configured so that:

• <full user match attribute> is specified in Username attribute

• the default domain is set to example.net

then the Directory Server will:

• search <full user match attribute> for a single entry matching
uid=barabash@example.net if the provided SASL id is barabash

• search <full user match attribute> for a single entry matching
uid=barabash@myorg.co.uk if the provided SASL userid is
barabash@myorg.co.uk

5.5.4 SASL GSSAPI configuration

RFC 1964 defines the Kerberos v5 GSSAPI (Generic Security Service Application Program
Interface). This is used by the SASL GSSAPI mechanism.

SASL userids for GSSAPI are therefore Kerberos principals, which take the form:
username@realm where realm is a Kerberos v5 realm (normally written in uppercase.)
The realm is somewhat analogous to the domain used in other SASL mechanisms. The
default Kerberos realm must be specified in the Directory Server’s
isodeSASLGSSAPIRealm attribute.

In order to use the GSSAPI mechanism, an administrator first has to:

1. Configure Kerberos v5 on each machine running M-Vault

2. Create the LDAP service Kerberos principal for each Directory server, of the form:
ldap/hostname@realm

The hostname is the fully qualified hostname of the machine, and the realm is the
Kerberos realm. GSSAPI implementations vary in this area so for full details consult
your GSSAPI vendor’s documentation; but generally you would generate a random
password and you should also define that the principal is a service as opposed to a user.

Although the realm often looks like a network domain name, it may not be. In this
example the server is running on demo1.example.net yet is a member of the
EXAMPLE.ORG realm: ldap/demo1.example.net@EXAMPLE.ORG

3. Export the principal’s key created in step 2 on each machine running M-Vault into a
keytab file. Again, different GSSAPI implementations vary in this area so for full details
consult your GSSAPI vendor’s documentation.

The GSSAPI configuration in M-Vault uses the Kerberos schema defined for MIT Kerberos
5 (see Kerberos: The Network Authentication Protocol [377]). The main difference from
the non-GSSAPI mapping rules is that by default searches for the full Kerberos principal
name will use the krbPrincipalName attribute.

These rules are defined in the following sections.

5.5.4.1 GSSAPI mapping rule - Active Directory Compatible

This rule can be used to construct a DN that is compatible with DNs used in Active
Directory. The DN is constructed as follows:

<attr>=<k-user>, <ADglue>, dc=<subrealm>, dc=<subrealm>, <suffix>

Authentication

84M-Vault Administration Guide

where:

• <attr> is the naming attribute used to identify entries in the Directory and is specified
in Username Attribute

• <k-user> is the original user portion of the provided userid

• <ADglue> is a glue entry (such as cn=Users) that bridges the gap between the
information provided in <realm> and where AD stores user entries - the value of this
is set is Container

• <subrealm> is a sub-realm of <realm> (the element dc=<subrealm> is repeated as
often as necessary, once for each sub-realm)

• <realm> is the realm portion of the provided userid

• <suffix> is optional and provides the remainder of the DN if the sub-realms are not
sufficient on their own to construct an appropriate DN - the value of this is set in AD
DN Suffix.

For example, if your system is configured so that:

• Username Attribute is set to uid

• Container is set to cn=users

• AD DN Suffix is set to o=My Corp, c=US

then the Kerberos principal of barabash@EXAMPLE>NET will map to uid=barabash,
cn=Users, dc=EXAMPLE, dc=NET, o=My Corp, c=US

5.5.4.2 GSSAPI mapping rules - Domain Part and Two Searches

These mappings support holding users with multiple Kerberos realms in multiple separate
subtrees, and is a two-stage process:

1. Search from <search base> for entries where the value of <realm match>. The DN
of the matching entry is used as the value of <realm suffix>, the starting point for
stage 2. krb5RealmName=realm.

• The attribute represented by <realm match> is specified in Username Attribute.

• The attribute represented by <search base> is specified in Search base DN.

2. Perform a subtree search from <realm suffix> for entries where <user match>
match the provided Kerberos principal. The resulting match of this second search is
used as the DN.

• <realm suffix> is the result of the first part of the search.

• <user match> is specified in Username attribute

For example, if your system is configured so that <search base> is set to o=My Corp,
c=US and the provided Kerberos principal is barbash@EXAMPLE.NET, the Directory
Server will:

1. Search from <search base> for an entry where <realm match> = EXAMPLE.NET

2. Use the DN of that entry (for example, o=My Corp, c=US) as the value of <realm
suffix>.

3. Search from <realm suffix> for an entry where the value of <user match> is a
match for the provided Kerberos principal.

4. Use the DN of the entry containing the match as the matching DN. For example, cn=R
Barabash, ou=R&D, o=My Corp, c=US

Authentication

85M-Vault Administration Guide

5.5.4.3 GSSAPI mapping rule - Single search

This mapping rule is the most flexible, as it allows users in the same subtree to have different
Kerberos realms. It does this by searching for the complete Kerberos principal.

It searches from <search base>, checking the values of <full match attribute>
for a match to the Kerberos principal, where:

• <search base> is specified in Search Base DN

• <full match attribute> is specified in the Username attribute.

5.5.5 SASL EXTERNAL configuration

If the LDAPv3 DUA has previously set up a confidential connection using SSL or TLS,
and presented the Directory Server with a client X.509 certificate, then a SASL bind using
the EXTERNAL mechanism can be attempted.

X.509 certificates contain a subject name, which is a DN. Certificates purchased from
commercial CAs such as Verisign usually contain non-useful subject names which include
information like email addresses, and the vendor’s context prefix. Because the Directory
Server uses the subject name directly from the certificate, and since the names in commercial
certificates are unlikely to exist in your DIT, this means that commercially obtained
certificates typically cannot be used with the SASL EXTERNAL mechanism. The only
practical way to use SASL EXTERNAL is when there is a locally controlled CA that can
issue certificates with locally valid DNs.

Before using the subject name the Directory Server must make additional checks on the
certificate to ensure that the subject name should be trusted.

To configure these extra checks, configure TLS as described in Section 5.7, “TLS
configuration”. Set the tlsVerifyClient attribute to either optional or required and set the
list of trusted CAs to include the CA that signs the certificates issued to SASL EXTERNAL
users.

5.6 Password management

This section describes how passwords are used, transmitted and stored.

5.6.1 Password policy

Normally M-Vault allows DAP and LDAP binds using simple authentication to succeed
based on the equivalence of a stored password and the presented password. This is not
always appropriate, and it is sometimes required to impose some additional constraints on
how users are able to authenticate to their accounts in the Directory.

M-Vault can be configured to enforce a password policy, based on
draft-behera-ldap-password-policy-09. Entries containing userPassword attributes are
all subject to this policy, with the sole exception of the DSA Manager account.

The policy controls:

• if and when passwords expire

• whether failed attempts to bind cause the account to be “locked”, and for how long

• if and how users are able to change their passwords.

Authentication

86M-Vault Administration Guide

To enable a password policy, connect to a Directory Server using M-Vault Console.
Password Policy is an option in the Configuration group.

Figure 5.1. Password Policy page

Before you can specify any other options, you must select Enable Password Policy.

There are four separate pages in the Password Policy section:

• Usage Policy: This page is used to specify general information about passwords, most
of them time-based.

You can specify times using whichever units are most appropriate and they will be
converted to seconds for storing as part of the password policy.

• Modification Policy: This page is used to specify details about who is allowed to change
passwords, and what restrictions should be imposed on any password values.

• Hash Scheme: For an installation where password values are hashed (determined by
whether Enable Password Hash Scheme Policy is selected), the parameters on this
page determine what kind of hash scheme to use (see Section 5.6.3, “Storing passwords
in the GDAM”).

• Deprecated: This page is provided for backward-compatibility. If this is a new installation
that is not using previous configuration files, nothing on this page is required.

5.6.2 Changing passwords

Passwords may be changed using the normal DAP/LDAP Modify operation, and also using
the LDAPv3 extended Password Modify operation defined in RFC 3062.

Authentication

87M-Vault Administration Guide

Successful attempts to modify a password will cause the entry’s pwdChangedTime attribute
to be updated, and potentially its pwdHistory and pwdFailureTime attributes.

The Directory Server can be configured to check the quality of new passwords. The
Directory Server first has to be configured with Enable Password Policy. The Check
Password Quality option then determines what kind of checking is performed:

• Never Do not perform any checking. This is also the default if password policy is not
enabled.

• If Possible Check passwords if possible. If a check is not possible (for example, the
new password has been hashed by the DUA) allow the modification.

• AlwaysAlways check passwords. If a password cannot be checked, prevent the
modification.

Users with LDAP clients can use a special control defined by
draft-behera-ldap-password-policy-09 when modifying their own entry, which will cause
additional details of any password quality check failures to be returned.

The following checks are made on the presented password (some of the related parameters
here appear on the Deprecated tab):

Minimum length
If the Directory Server’s Minimum password length is set and non-zero, the presented
password must be at least that length.

Invalid reuse
If the Directory Server’s Maximum number of passwords in history is set, the
presented password must not be in the list of historical passwords in the entry. The
list of historical passwords is maintained in each entry’s pwdHistory operational
attribute.

Too recently changed
If set, the Minimum password age prevents users from changing their passwords too
quickly.

Insufficiently mixed
The password must use characters from at least 3 of the 4 sets: upper-case, lower-case,
digits, and other characters.

If an administrative user with appropriate access control permission - such as a user in the
Password Manager group - changes another user’s password, that password is said to have
been reset. If Force user password change is set to YES in the Modification Policy page,
this will automatically set the modified entry’s pwdReset operational attribute to TRUE.
The user will be allowed to authenticate using the password set by the administrator, but
will then be forced to change the password immediately. When the user successfully changes
their password the pwdReset operational attribute will be automatically removed.

5.6.3 Storing passwords in the GDAM

Passwords are normally held in the GDAM as-is, i.e. as unprotected plaintext. This mode
allows the use of simple binds and all password-based SASL mechanisms such as
DIGEST-MD5.

However if an attacker is able to obtain a copy of the database files, they will be able to
steal all of the passwords held in the Directory.

To protect against this kind of attack, the server can be configured to hash passwords before
storing them. To enable this, use M-Vault Console’s Password Policy section (see
Section 5.6.1, “Password policy”). The choice of the hashing algorithm used for storage
affects what kinds of binds will subsequently work:

Authentication

88M-Vault Administration Guide

SASLSimpleAlgorithmValue

All mechanismsYesPlaintext(none)

No mechanismsYesMD5 DigestMD5

No mechanismsYesSHA-1 DigestSHA

No mechanismsYesSHA-2(256) DigestSHA2

No mechanismsYesTraditional UNIX cryptCRYPT

No mechanismsYesSalted MD5 DigestSMD5

No mechanismsYesSalted SHA-1 DigestSSHA

No mechanismsYesSalted SHA-2(256) DigestSSHA2

SCRAM-SHA-1, PLAIN and
LOGIN only

YesIteratively salted SHA-1
Hash

SCRAM-SHA-1

If passwords are hashed in the GDAMs, a DUA using simple binds must provide the
equivalent plaintext password. The server will refuse attempts to compare a hashed password
from a DUA with a hashed password in the GDAM, regardless of the hashing algorithms
being used.

As a consequence, hashing passwords does not protect against attackers able to read arbitrary
packets from the network (e.g. the public Internet, or a wireless network). To protect against
that kind of attack the use of SASL security layers, or TLS, or some other network-level
confidentiality mechanism is recommended.

5.7 TLS configuration

The M-Vault Server supports LDAP and LDAPS over TLS/SSL. Your specific functionality
may also vary depending on the sorts of algorithms that your Directory clients can support.

This section explains the security issues to consider before implementing TLS, and then
describes how to configure the following in M-Vault Console:

• common TLS parameters, including cipher suites accepted by the Directory Server,
personal key information, and other options

• TLS configuration when using LDAP.

Caution: If LDAPS support is configured, but the TLS functionality is
unavailable, any new connections on the LDAPS port will be closed. This happens
if TLS is misconfigured or disabled.

5.7.1 Configuring TLS

TLS is configured using M-Vault Console.

1. Bind to the Directory using M-Vault Console.

2. On the Configuration page, select TLS from the list of options on the left.

The TLS Configuration pane is displayed, which contains the pages identified by tabs:
Identities, Attributes, Trust Anchors, Other Certificates and LDAP Server .

Authentication

89M-Vault Administration Guide

3. On the Identities page, you need to create or select at least one identity to be used when
connections are made that are not anonymous:

• Create... starts a wizard to create a new identity. This invokes the same wizard used
when a new identity is created in Sodium (see Section 3.10.1, “Generating a certificate
request”) and initialises the wizard using the DN of the Directory Server itself. Once
an identity has been created, you will be given the option to use it for both X.509 and
TLS if you want.

• Resume... is enabled if you have already generated a certificate request and now need
to finish creating the identity (see Section 3.10.3, “Linking a certificate to a Directory
entry”).

• Pick... enables you to browse the filesystem for an identity which has been created
previously.

• Remove... enables you to remove an existing identity so it will no longer be used by
the server.

• View... enables you to see details about the identity, to be sure it is the one that you
want to use.

For more information on identities, see Section 3.10, “Managing identities”.

4. TLS Client Authentication and Trust CA certificates in identities are enabled once
an identity has been selected. See Section 5.7.2.1, “Identity information” for more details.

5. Click the Attributes tab.

Authentication

90M-Vault Administration Guide

On the Attributes page, you can either set all the values yourself, or you can click Set
Defaults (as has been done in the example above).

Both TLS Support Flags and TLS Configured Cipher Suites are set using the
associated Edit... buttons. For more information on supported cipher suites, see
Section 5.7.3, “Supported TLS cipher suites”.

6. The Trust Anchors and Other Certificates page are used to specify certificates that
are used during certificate verification.

7. The LDAP Server page is used to specify the address of an LDAP server. The LDAP
server may be used as a source of certificates (if a trust chain refers to certificates which
are not otherwise available). Additionally, if Check CRLs is specified, then all
certificates will be checked to make sure that they have not been revoked. You can
check Use this directory server's LDAP address to have the certificate verification
process read this information from the local directory.

5.7.2 Server keys

TLS can operate without either the server or client having a key (using the DH_anon_*
suites). However, generally you will want at least the server to have a key, since the
anonymous suites offer no authentication.

The public key algorithm key types which may be used are:

• RSA key pairs

• DSA key pairs (DSA is sometimes referred to as DSS)

• ECDSA key pairs

Client support for the RSA algorithm is far more widespread than for DSA, ECDSA or the
anonymous DH suites. It is also difficult to obtain a commercially signed certificate using
the DSA or ECDSA algorithms, so if in doubt install an RSA key pair.

Authentication

91M-Vault Administration Guide

5.7.2.1 Identity information

Identity Information refers to the information used to identify the server cryptographically
to the client (usually by digital signature).

To support a public key algorithm suite (for example, RSA_with_DES_CBC_SHA), the
information comprises a private key (used for signature but never divulged to the client),
a certificate containing the corresponding public key bound to the server’s name, plus any
additional certificates which form a certificate path to a well-known trust point.

The Directory Server expects the Identity Information to be held on its own filesystem.
Note that the Identity Information is not stored or exposed inside a Directory entry, and so
it is never visible to clients.

Updating or viewing the Identity Information therefore requires access to the file system
used by the Directory Server, and so when using M-Vault Console to configure identities,
you must be running M-Vault Console on the same system as the Directory Server itself.

It is possible to use the same identity for both TLS and X.500 strong authentication, either
by selecting this option when creating it, or by using the Pick... button to choose the same
identity from both in both TLS and X.509 tabs.

5.7.2.2 Client authentication

TLS also supports authenticating clients using certificates installed on the clients. There
are three choices:

none
No client certificate is requested, and if one is presented then verification failure will
have no effect.

optional
A client certificate is requested and if one is presented it must verify, otherwise the
connection is aborted. If no certificate is presented, then the connection succeeds.

require
A client certificate is requested and if one is not presented or fails to verify, the
connection is aborted.

The certificate that a client presents is verified against a list of trusted CA certificates. This
list is provided to M-Vault as a single PEM encoded file containing one or more certificates.
The name of this file is configurable (it is a pathname relative to the server’s filestore
directory.)

TLS also permits clients to present chains of certificates, with these connecting the end
client certificate to a CA that the server trusts. The length (the depth of verification) of
such chains which will be permitted is configurable. The default length is 1, which means
that the certificate is signed by a single CA (which has a self-signed certificate). If
certificates are being used from a commercial CA a larger value will probably need to be
set.

5.7.2.3 Mandating TLS in LDAP

If the Require TLS in LDAP configuration option is set the server will enforce use of
encrypted communication over LDAP access points by aborting any connection where
communication is attempted when no previous successful StartTLS operation has taken
place. Note that this configuration option does not affect LDAPS access points, as LDAPS
enforces encryption implicitly and by definition.

Authentication

92M-Vault Administration Guide

5.7.3 Supported TLS cipher suites

Note: Isode does its best to ensure that regulations governing use and export of
cryptographic algorithms are not broken, but ultimately it is the licensee’s
responsibility to ensure that the appropriate regulations are obeyed with respect
to the use of cryptography.

The Directory Server supports a number of TLS cipher suites. Some of the suites are defined
by Internet standards (RFC 2246 and RFC 3268), while others are only defined by OpenSSL
(and therefore primarily only useful with OpenSSL clients). It supports RSA, DSA, and
ECDSA private keys.

Presuming an RSA key is being used, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
from RFC 5289 is a good choice. (When more than one cipher suite is enabled, the server
will select what OpenSSL considers to be the strongest from those that are enabled and
which are offered by the client.)

5.7.4 Revocation checking

Certification Authorities (CAs) occasionally wish to revoke a certificate, for example to
indicate that the certificate owner has reported that the private key has been compromised.
There are two common ways for a CA to communicate this: OCSP and CRLs.

OCSP (Online Certificate Status Protocol) provides a protocol for requesting the status of
specific certificates. A CRL (Certificate Revocation List) is a signed list of serial numbers
of revoked certificates.

Ordinarily, the CA indicates the location of CRLs and OCSP by adding extensions to issued
certificates. For CRLs, they use the id-ce-cRLDistributionPoints extension, and for OCSP
id-pe-authorityInfoAccess, with id-ad-ocsp.

When *CheckCRLs is set (either dsaStrongAuthCheckCRLs or tlsCheckCRLs) then
URLs in such extensions may be used to retrieve CRLs. If the OCSP choice in the
AuthorityInfoAccessSyntax extension (as above) is set then OCSP will be used to
determine status (and CRLs may not be retrieved). Similarly, if *OCSPuri is set then that
provides a URI which will be used for checking all certificates.

Notice that these happen regardless of whether the relevant LDAP options are set. Those
options enable lookups when distribution points contain directoryName, and for lookups
of certificate entries even when no suitable extensions are set. Similarly, M-Vault itself
will use native lookup, so if it holds the relevant CRLs then they can be used.

OCSP requests are always sent unsigned. When *OCSPnonce is set the requests will have
the nonce extension, otherwise no extensions will be present. The response must normally
be signed by either the certificate's issuer or by a CA Designated Responder (with a
certificate issued by the certificate issuer specifically for OCSP). If it is signed by a
designated responder then that certificate must have the id-pkix-ocsp-nocheck extension
(indicating that that certificate's revocation status need not be checked). *OCSPresponder
can be set to indicate an alternative certificate that will be accepted as an OCSP response
signer; ordinarily that would be used along with *OCSPuri. If status checking with OCSP
fails (because the server fails to respond or the above constraints aren't satisfied) then CRLs
will be used instead. Ordinarily, short requests are made using HTTP GET (as allowed in
Appendix A of RFC 2560); this can be prevented (forcing use of HTTP POST) by setting
*LookupAvoidOCSPHTTPGET to TRUE.

There are also *CheckLeaf attributes which just check the revocation status of the leaf
certificate rather than the whole chain. In some environments this may be desirable (it may
be that the CAs are carefully managed and do not have revocation information, for example),
but usually the more general checking should be preferred. These attributes only have effect
when the relevant *CheckCRLs attribute is not TRUE.

Authentication

93M-Vault Administration Guide

Various kinds of retrieval can be disabled using *LookupAvoid* attributes. (This affects
both certificate retrieval and revocation checking.)

5.8 Authentication levels

To facilitate access control decisions, all Directory operations on the server take place in
the context of an assigned access control Authentication Level; this is normally (but not
always) derived from the form of credentials used to authenticate the originator of the
requested operation. This authentication level is also passed between Directory Servers
when the operation is chained over DSP.

5.8.1 Levels supported

The Directory Server supports the three basic authentication levels of X.501: None, Simple
and Strong. These represent increasing levels of authentication of the originator of the
operation, and are used by access control to decide whether the originator is sufficiently
authenticated to perform part or all of the operation.

Table 5.2. Authentication levels

Authentication required by Access Control

StrongSimpleNone

NNYNoneOriginator’s
authentication
level NYYSimple

YYYStrong

Authentication level is just one of the inputs into the access control decision function;
access may be denied on other grounds even when permitted by authentication level. See
Chapter 6, Controlling Access for further details.

5.8.2 Derivation of authentication level

The authentication level of an operation is usually derived from the form of credentials
(authentication mode) used by the last Bind operation on the association. However, any
Directory Server may choose to lower the authentication level associated with an operation,
especially one passed to it by a remote Directory server it knows little about. This section
describes how the authentication level of a Directory operation (originated by a DAP or
LDAP user, not necessarily connected to the local Directory Server) is affected by the
authentication mode of the association over which the operation arrives in the server.

5.8.2.1 DAP

The authentication level of incoming DAP operations is derived directly from the
authentication mode used in the most recent DAP Bind operation on the association.

Authentication LevelBind Mode

NoneAnonymous

NoneNameonly

SimpleSimple

StrongStrong

Authentication

94M-Vault Administration Guide

5.8.2.2 LDAP

The authentication level of incoming LDAP operations is derived directly from the
authentication mode used in the most recent LDAP Bind operation. You may configure
the local Directory Server to modify this authentication level, to distinguish between a
Bind in simple mode and a Bind in simple over TLS mode.

LDAPv3 may request operations without binding. Such requests are treated as if they had
used an anonymous mode Bind on the first operation received.

Authentication LevelBind Mode

NoneAnonymous

NoneNameonly

SimpleSimple

SimpleSimple over TLS

SimpleSASL

StrongSASL over TLS

5.8.2.3 DSP

Operations chained to the local Directory Server over DSP arrive with an authentication
level assigned by a remote Directory Server. The local Directory Server may (and usually
does) choose to modify this authentication level for the purposes of local processing of the
operation, depending on various criteria, both of implementation and policy.

There are a number of factors affecting the local authentication level:

• The authentication level of the DSP association over which it arrived.

• Whether all the Directory Servers it has passed through are “trusted”.

• DSP operation configuration.

• Whether the original DAP operation was signed.

These are described in more detail below.

The DSP-association authentication level is normally derived directly from the authentication
mode used in the most recent DSP Bind. However if the DAP operation is signed and the
signature can be verified, then the authentication level will always be Strong, even if the
operation was chained over an anonymous DSP association.

Authentication LevelBind Mode

NoneAnonymous

NoneNameonly

SimpleSimple

StrongStrong

The local authentication level of an incoming operation may never be greater than the
authentication level of the DSP association, except if the operation is signed. Signed
operations have their signature verified by each Directory Server and (on successful
verification) the authentication level for such operations is Strong.

The local Directory Server may choose which of its peers to trust to assign an authentication
level appropriate to the authentication mode used. Since any intervening peer may modify
an authentication level in a chained request, it is unsafe to trust any authentication level
higher than None if it has come from or passed through a peer which is not trusted by the
local Directory Server. The local Directory Server therefore modifies the local authentication
level of the operation to None if an untrusted peer has been involved.

Authentication

95M-Vault Administration Guide

Absent or adverse DSP operation configuration may also result in the local authentication
level being lower than the incoming authentication level. By default, if no DSP operation
configuration information is supplied, all incoming operations are assigned a local
authentication level of None. See Section 5.3.3, “LDAP v3 (as responder)” for further
details.

Chained operations which pass through the local Directory Server (that is, incoming
operations which are chained on to another peer) keep the authentication level they arrived
with. The local authentication level is only used if the operation is processed locally.

Authentication level is not significant to DISP operations. LDAP chaining The M-Vault
Server has the ability to “LDAP chain” incoming LDAP operations onto other LDAP
Servers. When it does this, the Directory Server is acting as an LDAP client using
anonymous authentication; consequently the authentication level of the original LDAP
request is not passed on to the new server. Incoming LDAP-chained requests are treated
as if they come from an LDAP client; see Section 5.8.2.2, “LDAP”. Note also that LDAP
operations may also be chained using DSP, depending on the type of knowledge reference
configured for the chained-to peer; in this case normal DSP chaining considerations apply.

5.8.2.4 DISP

Authentication level is not significant to DISP operations.

5.8.2.5 LDAP chaining

The M-Vault Server has the ability to “LDAP chain” incoming LDAP operations onto
other LDAP Servers. When it does this, the Directory Server is acting as an LDAP client
using anonymous authentication; consequently the authentication level of the original
LDAP request is not passed on to the new server.

Incoming LDAP-chained requests are treated as if they come from an LDAP client; see
Section 5.8.2.2, “LDAP”.

Note: LDAP operations may also be chained using DSP, depending on the type
of knowledge reference configured for the chained-to peer; in this case normal
DSP chaining considerations apply.

Authentication

96M-Vault Administration Guide

Chapter 6 Controlling Access
This aim of this chapter is to explain how to define access to objects in the Directory. The
M-Vault Server includes a number of security features to control access to and modification
of Directory information.

Note: These services do not by themselves provide any guarantees of Directory
security but rely on security of the operating systems and hosts on which the
Directory Server(s) and any DUAs run, and in some cases also on the networks
connecting them.

6.1 Overview of access control

Access control protects entries, attributes and their values against disclosure or modification.
Access control regulates what type of operation can be performed on an entry and on an
attribute or value. Access control is supported by authentication (see Chapter 5,
Authentication), as access control itself is not concerned with proving identity.

Before performing any Directory operation, access controls are checked by the Directory
Server to ensure the requesting DUA has permission to perform the operation. If not, the
Directory Server may be permitted to perform only part of the operation (for example,
some attributes may be excluded from being returned in a Read), or a security error may
be returned, or, in some cases, the existence of the target of the operation may be denied.

There is a special setting that causes all modifications to require signed operations,
isodeRequireSignedModify. If that is set, then all modifications require signed DAP
operations.

A Directory Server may be configured to use a security policy, which in which case
operations must also satisfy the checks imposed by that policy in order to succeed (see
Section 6.5, “Security labels and clearance”). It is also possible to require that all write
(add, remove, modify, rename) operations must be signed by the DUA, and this requirement
takes precedence over the normal access control mechanism.

Access to entries in the Directory can be controlled using either Global Access or Local
Access. These are configured separately in Sodium: see Section 6.2, “Global access control”
and Section 6.3, “Local Access Control Information (ACI)”.

• Global Access Control uses the Simplified Access Control scheme.

• Local Access Control can use either of the two available access control schemes: Basic
Access Control or Simplified Access Control.

They both operate in the same way but the information is stored differently.

Access Control Information (ACI) settings are found in several places in the DIT.

Controlling Access

97M-Vault Administration Guide

6.2 Global access control

Caution: As the Data Manager and Server Manager are just other users, changes
made here can prevent them from binding to the Directory Server, and so can also
prevent the Data Manager from undoing erroneous access control changes.
Complex access control changes should not normally be attempted on a live
production Directory Server. You would have to enable a ‘super user’ mode to
resolve this issue.

Configuring Simplified Access Control can be quite complex. The “Global Access Control”
mode provided by Sodium abstracts much of this complexity into a view which makes it
easier to manage which users are permitted access to which parts of the directory tree.
Changes made using the Global Access Control view are translated by Sodium into
Simplified Access Control.

6.2.1 Roles, Rules, Items and Precedence

Global Access Control is based on roles and rules.

Roles are used to specify a set of users and the authentication level that they have. For
example, you may have a role which is called “System Manager” which applies to a single
specific user when bound using strong authentication, or a role called “France” which
applies to all the users below o=Acme,c=FR regardless of what authentication they have
used.

Rules define a set of access controls which either permit or deny access to certain entries
or attributes in the directory. So you might have a rule called “Can modify own telephone
number” which permits modification of the telephoneNumber attribute by the owner of
the entry (but not in entries owned by other people), or a rule “Cannot see devices” which
prevents the reading of any entries that have the device object class.

Any role may be combined with any rule, and the combination applied to a particular area
of the directory tree. This combination appears as a single item line in the Global Access
Control editor. For example, you might create an item consisting of the role “France” and
the rule “Cannot see devices”, and apply this to all entries below o=Acme.

There will be many items combining roles and rules, and each one has a precedence, where
higher precedence items override lower precedence ones. For example, a low precedence
item which denies access to anyone trying to read a telephoneNumber attribute will be
overridden by a higher precedence item which allows a specific user to read
telephoneNumber attributes. The standard installation includes predefined roles and rules
which can be copied and/or modified to suit your own needs.

6.2.2 Sodium’s Global Access Control View

Global access control is set in Sodium, using the Global Access Control View from the
View menu.

This view shows a list of items in order of precedence, each one containing a role/rule pair.
The default behaviour for the directory is to allow only access when specifically permitted,
and to reflect this, a special fallback item marked “DENY” will always appear at the bottom
of the list (below precedence 0). In the lower half of the window, a schematic display of
the directory tree is displayed, which reflects the scope of whichever item is selected.

Controlling Access

98M-Vault Administration Guide

Colours are used to indicate which area the selected item affects, and whether it denies
(red) or grants (green) access.

Guidance on using the interface to set access levels is available from the integrated help,
displayed by clicking the Help button.

Figure 6.1.The Global Access Control view

Note: At the top-right of the window is a small clock icon. Hover your mouse
over this clock icon to see how long it has been since the information displayed
in this window was refreshed.

6.2.3 Using predefined roles and rules

Figure 6.1, “The Global Access Control view” shows the default values for global access
control: these can be modified as required. The upper half of the window shows the roles
and rules currently in use. Click a role to see its area of application. Figure 6.1, “The Global
Access Control view” shows the effect of the first rule in the list: Block read of password
attributes.

• Add enables you to add more items using the roles and rules available.

• Select an item and click Edit to change its role, rule or precedence, or click Delete to
remove it altogether.

• Select an item and click Menu for a range of options appropriate for your selection.
Item Notes displays information about the roles and rules referenced in the selected
item. You can also (where appropriate) choose to view the role entries in a Browse view.

When you have made your changes, click Apply.

Controlling Access

99M-Vault Administration Guide

6.2.3.1 Creating and modifying roles

To create a new role, open the Global Access Control View from the View menu and
click the Configuration button.

Click New Role, or select a role and click Modify to change an existing one.

When you create a role, you have to specify the name of the role and the minimum level
of authentication required. The next steps are the same whether you are creating a role or
modifying one. The interface guides you through the process, and the following example
is shown to help you to understand the steps involved. The numbers in the images correspond
to the steps in the example.

❶
❷

❸

❼

❽

1. A new role is created called Supervisors.The name can be changed if necessary by
clicking the Edit link to its right.

This role requires at least simple binds, shown by the APSS icons. A green background
means that level applies:

• A represents anonymous binds

• P represents password protected (simple)

• S represents strong binds but unsigned operations

• S' (S with a prime sign) represents strong binds with signed operations.

As the level is set to at least simple binds, P, S and S' are all green.

2. By default, the role applies to all users. For this example, the role will incorporate
specified individuals: click Change.

3. The Change user filter box is shown. You can choose to apply the role to users, groups
or subtrees. For this example, select List of specific users.

Note: The next step is the same for all options other than All users, which
was the default.

4. The Global Access Control Role Editor now shows that the role will apply to specific
users.

• To return to the previous step and select another option, click Change.

• To specify the users, click Edit. The DN List Editor opens.

Controlling Access

100M-Vault Administration Guide

❺

❻

5. Click either Pick All or Pick to open a view of the Directory tree.

• Pick All enables you to select several names at the same time using the standard
keyboard options (Ctrl and click on Windows).

• If you choose Pick, you have to select the entries one at a time.

Alternatively, type the DN of an entry in to the field at the bottom of the DN List Editor
and click Add to add this DN to the list of those selected.

6. When you have chosen your entries, click OK to close the selection box. In this example,
two person entries have been selected.

Figure 6.2. Creating notes for the new role

7. The selected users are shown. Click the Edit link to make changes.

8. Click Edit to the right of Notes. The Edit Role Notes box opens, in which you should
provide information that would be helpful to anyone reviewing the purpose of this role
in the future.

The new role is displayed in the list of roles and can be used to configure access.

Controlling Access

101M-Vault Administration Guide

6.2.3.2 Creating and modifying rules

Create and modify rules following the guidance on screen in a similar way to the way that
roles are created and modified.

1. When first creating a rule, it must be given a name and you must specify whether the
rule is going to grant or deny access. All other information is specified once the rule
exists. You can change its name later.

2. The details of the rule are specified by adding restrictions one line at a time, clicking
Add new line to do so. Detailed guidance can be obtained by clicking the question mark
icon.

❶

❷

6.2.3.3 Making library roles and rules available

Before starting to create your own roles or rules, it is worth seeing if any of the rules in the
library are suitable. Some of the standard roles and rules may have been removed if Cleanup
has been run in the past. To reinstate them:

1. Click Library.

2. Select any roles or rules you want to add to the list of those available.

3. Click OK.

6.2.3.4 Importing and exporting roles and rules

Roles and rules can be imported from and exported to xml files. You can only export your
entire global access control configuration, but when importing you can specify that you
only want to import roles and rules for a subtree specified by a DN. This provides you with
a simple mechanism for backing-up your global access configuration before making changes
and, if necessary, reverting just a single subtree back to its original state.

6.2.3.5 Removing unused roles and rules

The Cleanup option streamlines the display by telling you which roles and rules are unused
and letting you remove them.

Controlling Access

102M-Vault Administration Guide

6.2.4 Modifying the area map

The area map shows the structure of the DIT rotated through 90 degrees, with the root on
the left and leaf entries (where shown) on the right.

The coloured background of the map indicates the area where the currently selected rule
applies. For example, when the Global Access Control view is first opened, the rule at the
top of the default list (a DENY rule, preventing password attributes from being read) is
selected and the whole of the map is red.

If you select the 4th rule from the top - the rule that grants permission to members of the
DSA Operators Group to read all entries and all attributes - you will see that it applies to
the cn=changelog and cn=config branches of the DIT (shown in green below).

❶

❷

Note: It is possible to add DNs to the diagram that do not yet exist.

To apply a rule to another part of the DIT, click the section of the map representing it. You
can also reduce the scope of a rule by clicking on a coloured block to de-select it. Clicking
on an entry in the map toggles through three possibilities: selection, chop after and chop
before.

To limit the complexity of the display, the wildcard character (*) represents all entries in
a portion of the DIT - you can, however, add a specific entry if you want to include it in
or exclude it from a rule. A yellow start to the left of a rule indicates that its scope has been
changed - and you can revert to the previous setting by right-clicking on a rule and selecting
that option from the menu.

Detailed instructions on the navigating the map are provided in the online help, as previously
described.

Controlling Access

103M-Vault Administration Guide

6.3 Local Access Control Information (ACI)

M-Vault supports Basic Access Control (BAC) as defined in X.501, and Sodium allows
the Access Control Information (ACI) rules for BAC to be viewed and edited.

For convenient reference, a ‘quick guide’ help-text is available within Sodium by clicking
on the help icon.

ACI information can be displayed for each entry using a separate ACI page. To open an
ACI page, first select the entry in the tree, then select New Local ACI view from the View
menu.

The example below shows the ACI information for a organization entry, o=MyOrg.

Note: The ACI shown in the example above has been created by the GAC editor.
The GAC editor detects when the local ACI editor has been used to manipulate
ACI and appends hex values to the information.

An ACI page has two purposes:

• To show the list of sources of ACI rules that affect operations on this entry, and provide
navigation to the entries containing those rules to view or edit them.

• To allow editing of the ACI rules contained within this entry. These will typically have
an effect on entries elsewhere, except in the case of Entry ACI.

In the case of Prescriptive ACI, the ACI rules are stored in subentries of the administrative
entry (see Section A.3.1.2, “Security” for an explanation of administrative entries), but
they are considered to be logically associated with the administrative entry. To view
Prescriptive ACI rules, open a Local ACI View of the administrative entry, then click the

Controlling Access

104M-Vault Administration Guide

Edit Prescriptive ACI link at the top of the page. This shows all the Prescriptive ACI
rules together, along with their subtree specifications. This dialog also provides a way to
add new access control subentries, via the Add new subentry link.

The ACI Rule Editor window is where the actual editing takes place. The header line of
each rule shows its precedence, the levels of authentication that it applies to, whether it
grants or denies access, its scope (attribute or entry), and the specific permissions that are
granted or denied. A green color is used to indicate aspects that have been granted, and a
red color for aspects that have been denied. All of these buttons have tooltips to help explain
their meaning in context. Below the header are additional restrictions or limitations that
apply to this rule. All link text can be clicked to make immediate changes or to pop up
editor dialogs for those aspects.

Controlling Access

105M-Vault Administration Guide

The whole list of rules may be expanded or shrunk by using the plus/minus icons or by
clicking on the background of the currently-selected rule. The list may be sorted by Scope
(entry or attribute), Precedence and Name using controls at the top of the list.

6.3.1 Access control held in the entries

In Basic Access Control, access control items can be stored as values of the entryACI
operational attribute in the entries themselves. Each value is a single item, and there may
be multiple values to this attribute. Access controls held in this attribute only affect the
individual entry itself and its attributes, and have no effect on other entries.

However, the AddEntry operation checks that Add permission has been granted to the
DUA to add the entry and all its attributes. As the entry does not already exist, the entryACI
attribute cannot be used, nor can a supplied entryACI attribute be used, as that would allow
anyone to add entries.

6.3.2 Access control held in subentries

Access control subentries solve this problem. Subentries are special entries located
immediately subordinate to an access control Administrative Point, and are not visible to
normal operations. They have an attribute subtreeSpecification which defines the subset
of entries over which they are effective, typically to the leaf entries or to a subordinate
naming context or another administrative point. The access control subentry has an attribute
prescriptiveACI whose values are used in the access control decision function for all entries
in that subtree. Thus, items in prescriptiveACI must grant the manager Add permission if
new entries are to be added to the subtree.

Access control subentries can also be used to reduce the problem of managing entryACI
in a large number of entries. If all entries in a subtree have the same access control, then
the common items can be placed as values of the prescriptiveACI attribute in an access
control subentry, and those values can be removed from the entryACI attributes in all the
entries.

This is taken further by the Simplified Access Control variant of Basic Access Control. In
this scheme, entryACI is ignored, the only access control used is that in prescriptiveACI
or subentryACI.

In order for a subentry to be used, the parent entry must be an Administrative Point with
an administrative role of Autonomous Administrative Area, Access Control Specific Area,
or Access Control Inner Area.

6.3.3 Access control held in the administrative point

Items from the prescriptiveACI attribute do not affect subentries themselves. In order to
add a new subentry via protocol, an Add permission must be granted in a subentryACI
attribute in the administrative point itself.

6.4 How access control is determined from ACI

The mechanism used to determine access control from local access control information is
known as the Access Control Decision Function (ACDF).

6.4.1 Access Control Decision Function inputs

The inputs to the Access Control Decision Function are:

Controlling Access

106M-Vault Administration Guide

• The identity of the requester: its Distinguished Name (DN)

• The authentication level associated with the requester, either None, Simple or Strong
(see Section 5.2.1, “Establishing identity”), and whether the operation is signed

• The target entry: the Distinguished Name (DN) of the entry to which the requester is
trying to gain access

• The set of Access Control Information (ACI) items which affect that entry (see
Section 6.3, “Local Access Control Information (ACI)”)

• Optionally, a specific type or value in the entry

• The type of permission requested.

For an entry the type of permission can be one of the following:

RemoveReadDisclose on error

ImportAddReturn DN

ExportModifyBrowse

For an attribute or value it can be one of the following:

AddCompareDisclose on error

RemoveReadFilter match

6.4.2 Access Control Information ACI items

Access Control Information (ACI) items define the access control policy for an entry. They
are located either in the entry itself (Section 6.3.1, “Access control held in the entries”), in
a parent administrative point (Section 6.3.3, “Access control held in the administrative
point”) or in a subentry (Section 6.3.2, “Access control held in subentries”).

The most useful fields are:

• The Item name, which identifies this ACI item to the administrator

This is ignored by the Access Control Decision Function.

• The Precedence level (0-255) of this item. If there are multiple items, some of which
grant permission and some deny, the higher level will override.

• The minimum Authentication Level to be considered as part of the User Class (see
below), either None (anonymous), Simple or Strong.

• The User Class to which this item grants or denies access: all users. the user with the
same name as the implied entry. explicitly named users. members of a group. users
within a subtree of the DIT.

• Protected items, which can be:

• The entry itself (the identity of the entry is implied by the location of this Access
Control Item in the Directory, see Section 6.3, “Local Access Control Information
(ACI)”).

• All user attribute types and their values.

• Explicitly listed types and values.

• A value of a DN-valued attribute which is the same name as the requester (so that a
requester can add or remove their own name from a membership list without being
able to affect the names of any other members on that list).

• Grants or denials of Permissions (see Section 6.4.1, “Access Control Decision Function
inputs” above for the permission types).

Controlling Access

107M-Vault Administration Guide

A typical set of items are created automatically when M-Vault is installed. Before making
changes, we suggest you familiarise yourself with these and make sure you understand
their effects and how they have been configured.

6.4.3 Access control decision function (ACDF) rules

The ACDF processes the information items and arrives at an answer: either grant permission
or deny permission. In doing so, it makes use of a number of rules:

• Permissions must be explicitly granted; if there are no items which grant access,
permission will always be denied.

• Only the item with the highest precedence relevant for this type of permission is used.

• Items which specify the most specific user class or protected value are preferred. For
example, there could be two items with the same precedence, one of which denies Modify
permission of an entry for all users, the other which grants Modification permission of
the entry for a specific named user. The latter will be honoured for that particular user

• If an item requires signed and the operation is not signed, the item does not apply.

• If a conflict remains that cannot be resolved by following the above rules, permission
is denied.

To prevent unexpected grants or denials, it is recommended that items which could conflict
be given different precedences, and that explicitly denying permission be avoided, except
in certain cases (for example, allow reads of all attributes except the userPassword).

6.4.4 The effects of ACI on operations

Table 6.1, “Permissions required for various operations” summarizes what permissions are
required in order for operations to be performed.

Table 6.1. Permissions required for various operations

Required permission:
attributes

Required permission: entryOperation

Compare userPassword,
unless a SASL bind is being
attempted

ReadBind

Read userPassword
attribute.

ReadSASL bind

Read for each requested type
and its values

Read and ReturnDNRead

Compare of the type and a
matching value

ReadCompare

None requiredBrowse and ReturnDN of
each matching entry

List

FilterMatch for types and
values used to match the

Browse and ReturnDN of
each matching entry

Search

filter, Read for types and
values returned in the result

Add for each type and value
supplied

AddAddEntry

None requiredRemoveRemoveEntry

Add or Remove for each
value specified in the entry
modification

ModifyModifyEntry

Add or Remove for each
value in the RDN

ModifyModifyDN (same parent)

Controlling Access

108M-Vault Administration Guide

Required permission:
attributes

Required permission: entryOperation

Add or Remove for each
value in the RDN, otherwise
none required

Export on the original entry,
and Import on the new
parent

ModifyDN (new parent)

Add and Remove for the
userPassword attribute

ModifyModify passwords

6.5 Security labels and clearance

This section covers access and administrative controls based upon security labels, clearances,
and associated security policy.

6.5.1 Introduction to security labels and clearances

Security labels and clearances may be used, in conjunction with a security policy, to
determine whether a user’s access to an object is to be granted or denied.

The determination is made based upon a label (or lack thereof) which indicates the sensitivity
of the object (e.g., object is “SECRET”) and a user’s clearance to access sensitive
information (e.g., user holds “SECRET” clearance).

6.5.2 Interaction with simplified and basic access controls

Security Label/Clearance Access Controls complement Simplified and Basic Access
Controls (see Section 6.4.3, “Access control decision function (ACDF) rules”). Both
subsystems’ access control decision functions (ACDF) must yield “grant” for access to be
granted.

Figure 6.3. Security label/clearance Access Control Decision Function

Clearance Label

Grant or Deny

Policy ACDF

If the Security Label/Clearance ACDF yields “deny”, then access is denied regardless of
the outcome of the Simplified or Basic ACDF. Likewise, if the Simplified or Basic ACDF
yields “deny”, then access is denied regardless of the outcome of the Security
Label/Clearance ACDF.

6.5.3 Security policy configuration

The security policy governing security label and clearance access and other administrative
controls is held in the rbacSecurityPolicy attribute in the Directory Server’s entry. This

Controlling Access

109M-Vault Administration Guide

attribute holds an XML representation of a Security Policy Information File (SPIF), as
defined by SDN 801c.

The XML representation may be created through the use of an XML editor or text editor,
or by BER to XML conversion tools which are available by request from Isode.

Changes to the rbacSecurityPolicy attribute do not become effective until the Directory
Server is restarted.

In the absence of a valid security policy at startup, Security Label/Clearance access and
administrative controls are disabled.

6.5.4 User clearances and object security labels

A user’s clearance may be specified by the clearance attribute held in the user’s entry.
The clearanceObject auxiliary object class is provided to allow user entries to be augmented
by this attribute. A change to a user’s clearance becomes effective upon their subsequent
Bind to the Directory Service. Sodium may be used to add clearance attributes to users,
see Section 3.11.5, “Applying a clearance to an entry”.

A default clearance (for users whose clearance is not specified in the clearance attribute)
may be specified via policy using the default security policy data mechanism. Commonly,
the default clearance is either ‘Unclassified’ or none (all access is denied).

An object’s security label is specified with the unsignedSecurityLabelInfo attribute of
the object. This attribute is operational. A change to an object’s security label becomes
effective immediately. Sodium may be used to add security labels to objects, and displays
relevant marking data when entries are shown. See Section 3.11.4, “Applying a label to an
entry”.

A default security label (for objects whose security label is not specified in the
unsignedSecurityLabelInfo attribute) may be specified via policy using the default security
policy data mechanism. Commonly, the default security label is either ‘Unclassified’ or
none (all access is denied).

Note: The DSA Manager is exempt from these access controls.

6.5.5 Directory Server clearance and security labels
configuration

The Directory Server may be configured to restrict how objects may be labeled. For instance,
a Directory Server may be configured such that all objects must have “SECRET” labels.
This is accomplished by adding a clearance attribute to the Directory Server entry. In
addition to other access control checks, the ACDF must return “grant” for the Directory
Server clearance and the object’s label for access to be granted. Changes to this attribute
are effective upon restart of the Directory Server.

The Directory Server may also be configured to require that users hold a suitable clearance
to utilize the Directory Service. For instance, a Directory Server may be configured such
that all users must have clearance granting access to “SECRET” data. This is accomplished
by adding a securityLabels attribute to the Directory Server’s entry, specifying one or
more security labels. If the user clearance fails to grant access to at least one of these

Controlling Access

110M-Vault Administration Guide

security labels, the user’s Bind request will be rejected. Changes to this attribute are effective
upon restart of the Directory Server.

Note: The Security Label mechanism does not preclude anonymous access. If
anonymous access is not desired, it may be disabled via Basic or Simplified Access
Controls.

Note: The Data Manager is exempt from these access and administrative controls.

Controlling Access

111M-Vault Administration Guide

Chapter 7 Connecting Directories
You may need more than one Directory Server to provide the Directory Service. This
chapter cover creating additional servers, creating knowledge references (superior,
subordinate and cross references) and specifying the authentication levels for connection.

7.1 Overview

Communication between Directory Servers is required for:

• Chaining and/or referral of operations (for background information, see Section A.3.3.1,
“Interactions between Directories and DUAs”).

• Shadowing (for background information, see Section A.3.4, “Shadowing”).

In both cases, you have to make changes for each Directory Server involved in
communication with other Directory Server(s).

When a Directory Server handles an operation, it needs to resolve where the target entry
(for example, the start of a search, the entry being modified or the parent of an entry being
added) is located. It does this using knowledge of the naming contexts that it holds.

The Directory Server can also have references to remote naming contexts that are
subordinate to ones that it holds (subordinate references) and to remote naming contexts
that are not directly subordinate to ones that it holds (cross references).

If subordinate and cross references are present that can be used to progress an operation,
the Directory Server will chain using information in those references. To create a subordinate
or cross reference you need to know:

• the DN of the naming context held on the remote Directory Server

• the DN of the remote Directory Server, and its presentation address

• whether the remote Directory Server masters the naming context being referenced, or
simply holds a copy.

If the Directory Server does not have the target entry in a local naming context, and does
not have any relevant subordinate or cross references, the Directory Server will chain to
the Directory Server using information held in its superior reference.

Directory Servers mastering naming contexts directly below the root are called first level
Directory Servers, and have no superior reference. Other Directory Servers do.

References are not bi-directional: a Directory Server used as a target for a subordinate
reference may not have any direct knowledge of the naming contexts held on the Directory
Server chaining to it.

You can make references to Directory Servers that you do not manage.

Connecting Directories

112M-Vault Administration Guide

7.2 Connection details for Directory Servers

Before you can connect to another Directory Server, whether it is one you are managing
or not, your Directory Server needs to know connection details: the presentation address
of the other server, its DN and other connection information. This information is recorded
using M-Vault Console. For servers you have created using M-Vault Console and are
managing, this information is already stored in a bind profile.

For servers you have not created and are not managing:

1. Start M-Vault Console and click Create on the tool bar.

2. Select New Bind Profile from the list.

3. Select:

• Managed Server if you want to create a new access point for a server you manage.

• Known Server if you want to record details of a server that you do not manage.

For the remainder of this section, the instructions assume you have selected Known
Server. For information relating specifically to a Managed Server, see Section 2.2.3,
“Creating a Directory Server”.

4. Enter the Hostname of the Directory Server and click Next.

5. Check that the port numbers are correct. If they are not, select them and click Edit.

See Section 2.2.3.3, “Specifying a presentation address” for information on specifying
a full presentation address, including selectors.

Click Next.

6. Type the DN of the Directory Server.

Click Next.

7. Give the profile a name so it can be recognised in a subsection of the list of Directory
Servers.

Click Finish. A new bind profile will now be shown in the list of Known Directory
Servers.

Connecting Directories

113M-Vault Administration Guide

7.3 Configuring knowledge references

Once you have bind profiles for more than one Directory Server, you have to configure
the references between them so that they can communicate with one another.

7.3.1 Superior reference

A superior reference is used to search other Directory Servers, higher in the hierarchy, for
information that cannot be found in the area covered by your Directory Server. (See
Section A.3.3.1, “Interactions between Directories and DUAs” for an explanation of superior
references.)

You can create a superior reference within M-Vault Console.

1. Bind to a Directory that you are managing using an appropriate level of access.

2. Select Superior Knowledge in the list of options on the left side of the Configuration
page.

Connecting Directories

114M-Vault Administration Guide

3. Select the DSA that holds information at a higher level in the tree than this Directory
Server.

A bind profile must exist for the Directory Server (either as a Managed or a Known
server) for it to be shown in this list. See Section 7.2, “Connection details for Directory
Servers” for information on creating bind profiles for Known servers.

4. Click Apply to save the changes.

7.3.2 Subordinate and cross references

Subordinate and cross references are created within Sodium: Sodium automatically
determines whether a reference should be a cross-reference or a subordinate reference
depending on the naming context of the data on the remote server. As with a superior
reference, bind profile information must be recorded for the Directory Server you are going
to reference.

1. Open Sodium and bind to the Directory Server from which you are going to create a
reference.

2. Switch to Admin view using View → New Knowledge Reference view.

3. Select the root of the Directory tree (World).

4. Right-click and select Add reference... from the menu shown.

5. Select the DSA holding the information you want to reference. The address of that DSA
is displayed automatically.

Connecting Directories

115M-Vault Administration Guide

Select or enter the Naming Context of the information on the remote server. The naming
context chosen does not have to be directly below the root of the Directory.

Click Next.

6. Select the database that will hold the reference information. Click Finish.

Sodium now shows the existence of the new cross reference or subordinate reference. The
example below shows a subordinate reference to ou=Sales,o=MyOrg.

Connecting Directories

116M-Vault Administration Guide

Cross references, such as the one to o=TheirOrg, are shown with a pink icon.

7.3.2.1 Viewing and changing reference properties

1. In Sodium, open an Knowledge Reference view and select the reference.

2. The right hand pane contains summary information about the reference. Note that this
pane is read-only. To change these values, you can use Dmish - see Section H.7.6,
“Modify managed object”.

7.3.2.2 Deleting a reference

To delete a reference, view the reference (using Knowledge Reference view). Right-click
on it and select Delete from the menu. You are asked to confirm the deletion.

7.4 Securing connections between Directory
Servers

When one Directory Server connects with another Directory Server, it does using either
DSP (for chaining) or DISP (for shadowing).

To specify authentication information for two Directory Servers that are communicating
with each other, you need to create a Peer Configuration.

1. Start M-Vault Console and connect to the Managed server for which you want to specify
connection details.

2. Choose Create → Peer Configuration from the toolbar.

3. The Create new peer entry window opens.

Connecting Directories

117M-Vault Administration Guide

Select the Directory Server that you want to create a peer entry for from the list and
click OK.

Note: Only Directory Servers for which you have created a bind profile (either
Managed or Known) that are not already configured as peers are shown in
this list.

4. The selected Directory Server is now shown on the left side of the Peer DSAs page. If
several peer DSAs configurations have been created, they will be listed here: make sure
that the DSA you are providing details for is selected.

The Server Address of the Directory Server is shown in the list on the right. It can be
changed here if necessary.

7.4.1 DISP authentication

The DISP protocol is used when shadowing, and you can specify the authentication mode
that the server you are managing will use when it initiates or responds to a bind request
from a remote DSA. See Section 5.3.4, “DSP (as initiator or responder)” for information
on the effects of choosing modes of authentication for the DISP protocol.

1. From the M-Vault Console window, click Peer DSAs. Select the peer that you are
configuring from the list on the left.

2. Click DISP to configure the authentication level for DISP connections (when shadowing)
between the two Directory Servers.

Connecting Directories

118M-Vault Administration Guide

3. The default is to use the same authentication mode for initiating and responding. You
can choose to specify them individually using the Advanced mode button. The available
modes are:

• Name only – no other details are required.

• Simple – you must specify a password. Either type one into the field or click Generate
to create one automatically. To see the characters of the password, select Show.

• Strong – the Directory Server must have an X.500 identity (a certificate).

Note: M-Vault only accepts Simple or Strong bind requests, so do not
choose Name only if the peer DSA is another Isode DSA.

7.4.2 DSP authentication

The DSP protocol is used when chaining or referring. You configure the authentication
mode to use in exactly the same way as you do for the DISP protocol (see Section 7.4.1,
“DISP authentication”), using the DSP page. See Section 5.3.4, “DSP (as initiator or
responder)” for information on the effects of choosing modes of authentication for the DSP
protocol.

You have an extra option when choosing authentication mode:

• Anonymous – no identifying information is passed between the Directory Servers.

7.5 Distributive changes

To distribute the Directory Service over more than one Directory Server, you must:

Connecting Directories

119M-Vault Administration Guide

1. Set up a new Directory Server following the steps in Section 2.2, “Creating a Directory
Server”. If the naming context mastered by this new Directory Server is not immediately
beneath the root, you will need to supply a superior reference to another Directory Server
(see Section 7.3.1, “Superior reference”).

Note: It is possible to set up Directory Server which will only hold a copy of
a naming context mastered by another Directory server.

2. Check the new Directory Server’s initial configuration. See Section 4.5, “General
configuration of the Directory Server” for how to check the default settings in M-Vault
Console. For example, you may wish to change:

• Policies with regard to searching, chaining or referral and shadowing.

• The authentication requirements when communicating between Directory Servers.

Section 5.2.1, “Establishing identity” gives background information on authentication.

3. Configure the references between servers:

• Set up subordinate references to the naming context(s) of the new Directory Server.
This has to be done on all the Directory servers with naming contexts superior to that
of the new Directory server. Set up any required cross references between servers.
See Section 7.3.2, “Subordinate and cross references”.

• Set up any required shadowing agreements. See Chapter 8, Shadowing.

4. Load the Directory user information for the new Directory server, if this has not yet
been done. See Section 3.8, “Importing and exporting entries”.

7.6 Using a Directory Server as a connection

You can create a Directory Server to use as a connector between two other Directory
Servers. To do this:

1. Create a Directory Server, choosing the option that incorporates a superuser account
(see Section 2.2, “Creating a Directory Server”.).

2. Create bind profiles for the Directories you are going to connect (as known servers)
using M-Vault Console (see Section 7.2, “Connection details for Directory Servers”).

3. Connect to the Directory using Sodium. Delete all existing entries.

4. Create cross-references to the two servers you are connecting (see Section 7.3.2,
“Subordinate and cross references”).

Connecting Directories

120M-Vault Administration Guide

Chapter 8 Shadowing
Making sure that Directory information is close to those who need it minimises access
times. This is achieved by shadowing – or replicating – information so that more than one
Directory Server holds a copy of the same information.

8.1 Overview

Replication of Directory information is called shadowing. Two Directory Servers establish
a shadowing agreement with each other, where one Directory agrees to supply a copy of
some or all of the information it holds.

A single Directory Server may act in the role of a shadow supplier, a shadow consumer,
or both, depending on the shadowing agreements between it and other Directory Servers.

Many copies of a part of the DIT (a naming context or part of it) may be held by a number
of different Directory Servers; however, only one is considered to be the master copy.
When information changes, it is the master copy which is updated, and then the changes
are propagated to the shadow copies, following the rules laid down in the various shadowing
agreements.

Depending on the shadowing agreement, a Directory Server in a shadow consumer role
may request an update from a supplier Directory Server, or the shadow supplier may initiate
the update. The update can take place at a defined frequency or on demand, and the actual
update can be either incremental or total. An incremental update includes only those
modifications since the last update. In both cases, a timestamp uniquely identifies the update
transaction.

The protocol used for replication is the Directory Information Shadowing Protocol (DISP).

8.1.1 Replicating parts of the Directory

To set up a shadowing agreement between two Directory servers:

1. The two Server Managers must agree:

• The context prefix identifying the naming context to be shadowed under the agreement.
You can limit the replication to a certain number of levels below the context prefix,
you can prevent certain subtrees from being included (see Section 8.1.1.1, “Chop
shadowing”, and you can exclude certain attributes from the shadowed information
(see Section 8.1.1.2, “Attribute filtering”.

• Whether the shadowing is to be initiated by the supplier or the consumer.

• The agreement identifier and version number.

• The frequency with which to supply or request updates, depending on whether the
agreement is supplier or consumer initiated, and when the updates should occur.

2. Each Server Manager needs to have the following information about the other Directory
Server:

• Its access point; that is, the Distinguished Name and Presentation Address.

• The security credentials.

Note: Both Directory Servers involved in a shadow agreement need to have
bind profiles in M-Vault Console.

Shadowing

121M-Vault Administration Guide

3. If secondary shadowing is to take place – neither the supplier nor the consumer masters
the specified naming context – the Distinguished Name of the mastering Directory
Server and the security credentials associated with it must be known.

4. If an Administrative Point for the naming context to be shadowed does not exist, the
supplier Server Manager should set one up. Configure it as an access control specific
area and a collective attribute specific area. How to do this is described in Chapter 6,
Controlling Access.

Note: An Administrative Point for this naming context must not exist in the
consumer Directory Server.

5. You may wish to decide the authentication details for the initiating and responding
Directory Servers.

6. Set up the responder end of the agreement on the Directory server that will respond to
a request. This could be the shadow supplier or consumer.

7. Set up the initiator end of the agreement on the Directory server that will initiate the
request. This could be the shadow consumer or supplier.

Details on how to set up a shadowing agreement are given in Section 8.3, “Creating shadow
agreements”.

8.1.1.1 Chop shadowing

M-Vault Console permits the configuration of shadowing agreements which either cover
full naming contexts, or a specified number of levels in the DIT below the context prefix,
or which excludes particular subtrees. This section describes two ways in which subtrees
can be used to control the information which is shadowed. These methods are called:

• Chop before: information below a subordinate naming context is excluded from a shadow
update of a superior naming context.

• Chop after: the context prefix of a subordinate naming context is replicated, but
information below the context prefix is excluded from a shadow update of a superior
naming context.

In both methods, the subtrees are not shadowed. In the case of chop after, the top of the
subtree is shadowed.

This section uses the example in Figure 8.1, “Example Directory Information Tree” to
explain these methods.

Figure 8.1. Example Directory Information Tree

cn=Barry Jones cn=...

ou=Sales ou=R&D

l=North Americal=Europe

ou=Finance

cn=Pat Smith

o=Acme Limited

ou=Sales

cn=...

Using the example in Figure 8.1, “Example Directory Information Tree”, chop after
shadowing would be useful when a user performs a single-level search on all departments

Shadowing

122M-Vault Administration Guide

in the locality of Europe (l=Europe). If the department represented by ou=R&D has been
excluded as per chop before shadowing, a one-level search for all departments below
l=Europe involves chaining to the Directory Server holding the context prefix ou=R&D.
However, if you have used chop after shadowing, this context prefix could be included in
the shadow update on the consumer Directory Server. A one-level search on all departments
in the Europe locality would then not require chaining, as all of the required information
would be shadowed on the consumer Directory Server.

Note: The consumer Directory Server in a shadow agreement knows that entries
are missing from its copy of the naming context, and it may chain back to the
supplier Directory Server to locate information if required.

If you want to exclude a subtree from a shadow update (for example, ou=R&D), you need
to modify the shadowing agreement on the supplier, and add the subtrees to the list of
specific exclusions.

If this agreement has already sent an update to the consumer Directory Server, you must
then force the supplier Directory Server to send a total update. This is the only way to force
the consumer Directory Server to remove the subtree.

8.1.1.2 Attribute filtering

In certain environments it may be useful to restrict the contents of entries that are replicated.
This may be done for reasons of privacy (excluding sensitive personal information), security
(excluding passwords), or to conserve network bandwidth (excluding large attributes).

The attributes being filtered from the replication may be selected on the basis of the object
class of each entry in the replicated area. For example, telephone number attributes could
be excluded from all entries using the person object class, but included in organization
entries.

Consumer Directory Servers have knowledge about which entries are incomplete, but have
no knowledge regarding which attributes are missing from these entries. As a consequence,
if a DUA requests attributes (this includes searching on those attributes) that are not present
from an incomplete entry, the consumer Directory Server will attempt to chain the operation
back to the supplier Directory Server. This is often inappropriate, so X.500 defines the
copyShallDo service control to disable this behaviour.

There is no means in LDAP to specify the copyShallDo service control. Because not
setting this service control causes surprising behaviour, M-Vault treats requests from LDAP
DUAs as always having the copyShallDo service control set.

The agreement contains a number of rules defining which attributes should be included,
and which attributes should be excluded. By default, an agreement will have a rule specifying
that all attributes are included from all object classes.

If this agreement has already sent an update to the consumer Directory Server, you must
then force the supplier Directory Server to send a total update. This is the only way to force
the consumer Directory Server to remove the filtered attributes (see Section 8.4.1, “Viewing
the status of shadow agreements”).

Shadowing

123M-Vault Administration Guide

8.2 System-wide shadowing settings

Some shadowing settings apply to all agreements across the whole system. These are
specified using the Shadowing option on the main Configuration page when managing
the Directory Server using M-Vault Console.

The Shadowing page allows you to specify:

• Whether you want to keep connections open when performing ‘on change’ updates.

• The minimum interval between successful updates, in seconds. If you do not specify a
value, a default of 600 is used.

• The minimum delay before retrieving unsuccessful updates, in seconds. If you do not
specify a value, a default of 1800 is used.

• How long to keep unnecessary changes in the database. Unnecessary changes are those
that are earlier than the last time that all the agreements (from this GDAM) were last
updated, so they are not required for any incremental updates.

Click Apply to save your changes. Changes you make here apply to every shadowing
agreement.

8.3 Creating shadow agreements

A shadowing agreement must be set up on both the supplier and the consumer Directory
Servers.

Shadowing

124M-Vault Administration Guide

Make sure that a bind profile exists for both the consumer and supplier Directory Servers:
if you do not manage both servers, one of the profiles will be for a ‘known’ server. See
Section 7.2, “Connection details for Directory Servers”.

Note: The Directory Server initiating the shadowing should be set up last,
regardless of whether this is the supplier or the consumer.

8.3.1 The supplier’s end of a shadowing agreement

A supplier’s shadow agreement is set up using M-Vault Console. A bind profile for the
consumer Directory Server must exist in M-Vault Console (see Section 7.2, “Connection
details for Directory Servers”).

1. Using M-Vault Console, connect to the Directory Server that will be supplying the data.

Note: If this Directory will be initiating the shadow request, make sure the
responder has already been configured.

2. Select Create → Supplier Agreement from the toolbar. The Create Supplier
Agreement window opens.

3. Select the Naming context that forms the top of the tree to be replicated.

Click Next.

4. Select the Directory Server that will be the consumer.

Note: If you cannot see the consumer Directory Server, create a bind profile
for it. See Section 7.2, “Connection details for Directory Servers”.

Click Next.

5. If you are managing the consumer, and it is online, you will be asked to specify a database
to hold the supplied data. This page is not shown if the consumer database is not online,
or if you are not managing it.

6. Specify the authentication requirements for the initiating and responding Directory
Servers.

Note: If you have created a peer entry for consumer Directory and have
specified authentication details there (see Section 7.4.1, “DISP authentication”),
this page is skipped.

Shadowing

125M-Vault Administration Guide

The options are:

• Name only: the Directory Server’s DN is passed for identification purposes

• Simple: a password is required – select Show to see the characters in the password
and click Generate if you want the system to create a random password for you

• Strong: the server must have an X.509 identity (a certificate)

Your choice must match that on the consumer Directory Server. This will happen
automatically if the consumer Directory Server is online and is managed by you;
otherwise, you will have to share connection details with the manager of the other
Directory server.

Click Next.

7. The Summary page is displayed.

• If the consumer Directory Server is online and is managed by you, the consumer
version of the agreement is created automatically in that Directory Server’s
configuration.

• If the consumer Directory Server is not online or is not managed by you, the consumer
version of the agreement must be created manually.

Click Finish.

Shadowing

126M-Vault Administration Guide

8.3.2 The consumer’s end of a shadow agreement

The wizard pages for creating the consumer end of a shadow agreement are very similar
to those for creating the supplier end, with the following differences:

• You will have to select the server that is supplying the information. If the server is not
listed, you must create a bind profile for it. See Section 7.2, “Connection details for
Directory Servers” for more information.

• If the supplier cannot be contacted, or is not advertising its naming contexts, you may
have to enter the context prefix manually.

• You will always be asked to specify a database for storing the shadowed entries.

• The supplier end of the agreement will be created automatically if the supplying Directory
Server is managed by you and is online.

8.4 Configuring shadow agreements

The shadow agreements that exist for a Directory Server are shown on the Shadow
Agreements page of M-Vault Console. Details for consumer and supplier agreements are
very similar, so a supplier agreement is shown as an example.

1. Using M-Vault Console, connect to the Directory that is the supplier for an agreement
and select the Shadow Agreements page.

2. Select Supplying in the list on the left. A list of shadow agreements is shown on the
right.

The Supplying entry on the left can be expanded to show the individual shadow
agreements.

3. To view details of a shadow agreement, either:

Shadowing

127M-Vault Administration Guide

• Expand the list on the left and click the agreement you want to view.

• Select the agreement in the list on the right and click Select.

1.

2.

The Supplier Agreement List is replaced by a set of pages relating to the selected
agreement.

8.4.1 Viewing the status of shadow agreements

The Status page shows statistical information relating to the agreement. In the example
below, the last shadow update took place on 25 Nov 2010. Details of the most recently
reported error are also displayed. This page is also used to initiate an update.

Shadowing

128M-Vault Administration Guide

• Refresh updates information on this page. For example, if you force an update to take
place instantly, you have to refresh the page to show the success of that update and any
errors that resulted.

• Force update... initiates a shadow update, either immediately (Now) or at a set time.

Choose when you want the update to happen before you click Force update...:

• Now is the default: an update will take place as soon as Force update... is clicked.

• If you choose At specific time, a calendar is shown when Force update... is clicked,
enabling you to select a date and time.

8.4.2 Enabling agreements

You can enable and disable agreements using an option on the General page. You may
need to do this if, for example, you are making changes on the Directory Server at one end
of the supplier–consumer chain and do not want updates to take place during the change
process.

8.4.3 Specifying update mode

You can choose to update information – send it from supplier to consumer – at regular
intervals or when there is a change in the data. This is specified using the Update Mode
page.

The default is to update information whenever a change is made: all other options on this
page are disabled. If this is not a suitable option for your environment, you can change the
Update mode to Periodic, and specify related details.

Shadowing

129M-Vault Administration Guide

For periodic updates, you need to specify:

• Whether the update will be initiated by the Supplier or the Consumer.

• How frequently the update will take place (Update interval)

• How long the update can last before the connection is terminated (Update window size)

• Whether you will allow updates to take place outside of the specified time period.

8.4.4 Monitoring shadow agreements

When shadowing is configured, both Directory Servers (supplier and consumer) maintain
information about the state of each agreement that they know about.

Typically a Directory Server will log errors if an agreement is not working correctly, but
there may be situations where even though the agreement is not working properly, one or
both servers will not report an error. For example, if the supplier initiates an update which
never reaches the consumer, then the consumer may not report any error. If supplier and
consumer each believe that it is the other Directory Server's responsibility to initiate updates,
then neither of them will report an error, even though the agreement will never be updated.

M-Vault Console’s Shadow Agreements view is intended to make it easy to keep track
of the status of shadowing agreements. It does this by combining information from both
supplier and consumer of an agreement, and displaying it in a dynamic view that allows
an operator to see at a glance whether things are working properly, and where there may
be problems that require investigation.

M-Vault Console gathers information about shadowing agreements from each managed
Directory Server, combining information from both sides of the agreement where possible,
and using this information to present a view that summarises the status of all known
agreements.

Shadowing

130M-Vault Administration Guide

Initially, the Shadowing Agreements tab displays one row per shadowing agreement: each
row contains an agreement status summary. The tab will only display information about
agreements when there is a management connection to at least one of the Directory Servers
(either supplier, consumer, or both).

If M-Vault Console has a management connection to only one of the Directory Servers
(for example, you are managing a server that is consuming a shadow agreement which is
supplied by a non-managed Directory Server in a separate organisation), then the information
shown in the summary row is derived solely from the managed server: i.e., in the absence
of information from one of the peers, M-Vault Console assumes that whatever information
it can see is authoritative.

Each of the summary rows may be expanded or collapsed by using the Agreements...
menu (or by double-clicking on the triangle in the table) to show or hide information
reported from supplier and consumer. When expanded, the individual rows for supplier
and consumer contain information from the Directory Server in question.

Information displayed in each column of the table is as follows:

• An icon represents the state of the agreement, as determined by M-Vault Console.

A green icon is used to show that no errors are present; a red icon shows that errors are
being reported. An agreement is considered to be in an error status if it has reported an
error since the last successful shadow update.

In situations where M-Vault Console detects inconsistencies between the supplier and
consumer view of the agreement, an orange icon is used.

Shadowing

131M-Vault Administration Guide

If M-Vault Console has a connection to only one of the Directory Servers, then the
"expanded" view of the agreement will display a grey icon to indicate that no management
connection is active to the non-managed server.

• The name of the shadow area is displayed in the summary row. When the summary
row is expanded, this column contains whether the information in each row comes from
the supplier or consumer Directory Server.

• From and To columns show the identities of the supplier and consumer Directory Server,
respectively. In the summary row, the Directory Server DNs are shown. When supplier
and consumer rows are displayed, the display name of the Directory Server (if available)
is used.

If the supplier is a member of a failover group, then the summary row will contain a
failover icon, and the From column will show the DN of the failover group.

• The Last Shadow Update column displays the last time when the shadow agreement
was last updated successfully. The information shown is that which was reported by
supplier and consumer, and so there may be differences in the timestamps if the clocks
for both servers are not exactly synchronized.

• The Status column contains a brief description of the agreement state

To see more information on any of the agreements in the table, use the View Agreement...
option in the Agreements menu. This will invoke a dialog that provides more detail about
the selected agreement.

The Shadow Agreement Details dialog contains tabs which show summary, supplier and
consumer information. Any inconsistencies between supplier and consumer will be listed
on the Summary tab.

Shadowing

132M-Vault Administration Guide

The supplier and consumer tabs contain a Go to agreement... button which will be enabled
for any agreement on a managed Directory Server. Clicking this button will cause M-Vault
Console to open the management window that allows you to make changes to the
configuration of the agreement.

Shadowing

133M-Vault Administration Guide

Chapter 9 High Availability
M-Vault provides three means of adding service resilience to system failure:

• Failover. Hot standby mode where a single master is active amongst a group of miror
servers.

• Multimaster. All servers in a replication group accept changes and replicate them to all
other members of the group.

• Clustering. Hot standby mode where shared disks are used to support multiple nodes.

9.1 Failover

Failover is a hot-standby approach where there is a single master DSA and a number of
read only mirror DSAs, where any of the mirror servers can be promoted to become the
master as required. Each mirror server holds copies of all user data held in the master as
well as the configuration required to provide regular shadow consumers with shadow
updates. In the event of required operational downtime or catastrophic failure the system
can fail over to one of the mirror servers. When failover is complete the nominated mirror
server becomes the new master and can accept updates to the data and then supply any
changes to the other mirror servers and also to any regular shadow consumers.

The unit of replication in failover servers is the GDAM. This means that there is one
replication agreement per GDAM that is held in the master DSA. As GDAMs are created
on the master DSA replication of the configuration will mean that an equivalent GDAM
is automatically created on each failover mirror. As GDAMs are populated with entries,
or when any changes are made to them, this information is automatically replicated to each
of the mirrors. This means that once a set of failover servers is created and configured all
data stored on the master server (and changes to that data) will be automatically replicated
to each mirror.

9.1.1 Fundamentals and limitations

The server that currently accepts update operations and distributes changes is referred to
as the failover (or current) master. The full set of servers within the failover configuration
is referred to as the failover group. Servers in the group which are receiving updates from
the master are referred to as mirrors. Mirror servers will reject any client update requests
as these can only be directly handled by the current master. Servers receiving standard
shadow updates are simply referred to as shadows.

The failover mechanism uses an extended form of X.500 DISP to replicate data between
mirrors. The extensions allow shadowing to recover better from loss of synchronization
between servers - in particular if a mirror server has gone offline for a long period of time.
There is one failover shadowing agreement per-GDAM stored in the master server and the
agreement covers all data held in that GDAM database.

There are some important points and limitations that should be noted prior to deploying a
failover configuration:

• The failover implementation does not currently allow failover servers to contain consumer
agreements, i.e. they must not receive shadow information from any external server.

• Failover mirrors do not contain copies of all configuration. For example, SASL, TLS
and X.509 configuration is not copied to mirror servers. Thus, if the master server is to
provide a wider directory service, then this configuration must be created manually on
each server.

High Availability

134M-Vault Administration Guide

• When failing over it is always possible that the failover master will deem it necessary
to send a total update to mirror or shadow servers. This can happen if the level of
synchronization between servers cannot be established. Thus, if a very large amount of
data is involved then there may be some delay in resynchronizing servers, i.e. the length
of time it takes to perform a total update of all data.

9.1.1.1 Failover modes

There are two modes of master failover; normal and forced. In the normal mode the master
DSA is still running and M-Vault Console notifies it, upon operator request, of failover
initiation. Forced mode is used when the current master has suffered a failure or is
unreachable, and in this case M-Vault Console notifies each of the mirror servers which
should act as the master. These modes are described in detail in the following sections.

9.1.1.1.1 Normal failover mode

In this mode the master server must be running and be available. M-Vault Console informs
the current master of the server to fail over to. The current master then performs the
following steps:

1. The master waits for any outstanding user update operations to complete. Further update
operations are then rejected until failover has completed.

2. The current master sends the latest data changes to the nominated master until it is fully
synchronized.

3. The current master passes master status to the nominated master, which will then begin
to accept updates.

4. The current master notifies other mirror servers that master status has passed to the
nominated server.

9.1.1.1.2 Forced failover mode

In this mode at least one server in the failover group must be running. Here M-Vault Console
updates each running mirror with the value of the new master. The new master will then
update each of the mirror servers. Total updates will be pushed to any mirror that cannot
be updated with an incremental update. This may occur if, for example, a mirror server
contains changes that are not present on the new, and now current, master.

9.1.2 Creating a failover configuration

To create a failover configuration open a management window to the base directory server,
i.e. that you wish to mirror. Mirror servers will copy all data from this server and the selected
base server will be the initial master. Next, select Create → Failover Configuration via
the toolbar.

Note: The base directory server must not contain any consumer agreements.

You will then be required to enter a DN used to indicate the failover identity, or the failover
group name. When replicating data to shadow consumers, a supplier DSA must provide
an identity. This identity is commonly the DN of the base DSA. In the failover case different
DSAs can supply to a given shadow consumer at different times (depending on which is
the master at any given point in time). In order for this to work the failover servers must
establish a common identity when communicating with shadow consumers, i.e. with
Directory Servers that are not part of the failover group. This is always the DN of the first
DSA that was created in the failover group.

High Availability

135M-Vault Administration Guide

Once the failover configuration has been created you can go and create one or more failover
mirror servers.

9.1.3 Managing the failover group

The failover group is the set of Directory Servers comprising the current master server and
the set of mirror servers. It is possible to remove mirror servers from a failover group as
well as creating new failover group members. To view a failover group go to the Failover
tab of the M-Vault Console main window and select the group (or a member of the failover
group). The current master is displayed in bold. Servers are indicated as being up or down
as in the main Directory Servers tab.

9.1.3.1 Adding failover mirrors

To add a failover mirror open a management window to the current master server. Next,
select Create → Failover Mirror from the toolbar.

Note: When creating a new failover server, as with creating any new server,
M-Vault Console must be running on the same system as the server that is to be
created.

You will then be presented with a wizard which asks the following:

1. The unique server name, the Distinguished Name, of the new Directory Server. This is
the DN used by the server to identify itself to other members of the failover group.

2. The password of the new manager. There are two cases here:

a. If the manager bind profile of the master is not cn=DSA Manager,cn=config, the
password stored in the bind profile is used for the mirror bind profile.

b. Otherwise, a password is requested which does not have to be the password of the
current manager.

High Availability

136M-Vault Administration Guide

3. The bind profile name, where the bind profile will connect to the new failover mirror
using the manager’s credentials.

4. The file-system directory in which the new server will be created.

5. The presentation address that the server will listen on.

After the server has been created and started M-Vault Console will ask the current master
to add the new mirror to the failover group. The master will then go on to send initial
updates (of the configuration and all mastered information) to the mirror.

9.1.3.2 Removing failover mirrors

To remove a mirror from a failover group:

1. Open the M-Vault Console main window.

2. Click on the Failover tab.

3. Highlight the mirror server that you wish to remove.

4. Select Failover → Remove DN from the group...

Once a mirror has been removed from the group it is not possible to add it back in to the
group. To add a mirror of the same name back in to the group you should remove the old
instance and create a new server from scratch.

9.1.4 Failing over to a new master

Failover is initiated from the M-Vault Console main window. To nominate a Directory
Server as the new master go to the Failover tab, highlight the target Directory Server and
then select Failover... → Make DSA the master You will then be presented with a
dialog offering a choice of failover modes.

If the current master is running and contactable then the default choice, Normal, should
be made. This mode would be used when the master server is to be later brought down,
perhaps for an upgrade.

Forced mode should be chosen in the following cases:

• The current master is not running.

• The current master is not reachable.

• The current master cannot, for some reason, make contact with the proposed master.

9.1.4.1 Errors and recovery

If a failover group member is unavailable at the time failover is performed then it is likely
to be in an error state when brought back online as that server’s understanding of the current
master may be inconsistent with the other servers in the failover group. To illustrate this
consider a scenario in which there are three servers (DSA1, DSA2 and DSA3) in a failover

High Availability

137M-Vault Administration Guide

group. If DSA1 is the initial master and it goes down, the operator may then initiate a forced
failover to DSA2. At this point DSA2 and DSA3 believe that DSA2 is the master. When
DSA1 is brought back onlne it will still believe that it, DSA1, is the master. As a
consequence it will reject any changes sent to it by the current and actual master (DSA2
in this example). To recover from this the following steps should be performed:

1. Bring DSA1 back online.

2. Initiate a forced failover, selecting again the current master (DSA2 in the example
scenario). This will mean that DSA1 will start accepting updates from DSA2. If a total
update is required then this may take a non-trivial period of time.

3. To make DSA1 the master again initiate a normal failover from DSA2 to DSA1. DSA1
will not be made the current master until it has fully resynchronized with DSA2.

9.2 Multimaster

Multimaster replication allows writes to happen on any node at anytime. Changes are
propagated to all other members of the group in synchronous fashion. Servers that lose
synchronization or lose connectivty with other members of the group are regarded as
degraded until such time as that server can reconnect and resynchronize with the other
members of the group.

The unit of replication in multimaster is the GDAM. GDAM configuration is replicated
between group members. Thus if a GDAM is created on one server, the corresponding
configuration is replicated and an identically configured GDAM is created on the other
servers. The contents of GDAM database are then replicated once a replication agreement
has been created for it.

9.2.1 Fundamentals and limitations

In the multimaster model employed by M-Vault the server processing a client update
operation will not send a positive notification to the client until all multimaster group
members have accepted the update. Thus replication is synchronous. The advantage to this
is that at any given time all servers will return the same result to a query for information.
If a password change happens on one server, then all other servers should report the same
password value immediately. This contrasts with other multimaster models, such as eventual
convergence, where the server processing an update can return a positive response to the
client before any of the other replica servers have been updated. The downside is that update
throughput is reduced, due to the network overhead of the additional synchronization
protocol and by being limited to the speed of the slowest processing server. The upside of
M-Vault's approach is that, in contrast to the eventual convergence model, inconsistent
changes cannot be applied simlutaneously to different servers in the network, and so the
view of the data is consistent across the service.

Limitations to the use of multimaster are as follows:

• Multimaster servers cannot share shadow supplier duties. A single multimaster can
provide X.500 DISP updates to shadow consumers, but no other server in the multimaster
network can. This is due to DISP's requirement for a single logical and sequence of
changes being the basis of the synchronization algorithm. This property is not present
across replicas in a multimaster as the order of stored changes can vary between servers.

• Security related configuration, e.g. password hashing, SASL and TLS configuration is
copied into new replica DSAs by MVC at creation time. However, this configuration is
not subsequently replicated between servers and so any changes made to the core
configuration on one server should be made manually on all other servers as necessary.

High Availability

138M-Vault Administration Guide

Note that password hashing configuration, in particular, must always be consistent across
all replicas. Failure to do so may result in password based authentication failing on some
servers (due to different treatement of passwords in line with the local configuration).

• Changes are distributed if quorum is achieved. Specifically this means changes will only
be replicated if a given number of replica servers signal that they are able to accept a
change. By default the quorum level is set to 0, meaning any server will process an
update irrespective of the ability of other servers to receive and process the change. This
confers the highest level of service resilience, though means that network partitioning
may result in the possibility of inconsistent changes being applied to different replicas
servers. In general it is recommended that the quorum level be set to half the number of
replica servers, which ensures that inconsistencies cannot enter the system. If the number
of available servers is reduced to a level below this then the configured quorum level
can be reduced as necessary.

9.2.2 Creating a multimaster configuration

To create a multimaster configuration open a management window to the server that you
wish to create a replica of. Next, select Create → Multimaster Configuration from the
toolbar.

Note: The source directory server cannot contain any consumer agreements or
be configured for failover.

You will first be required to enter a label for the multimaster replication group. This is then
used to label the group in M-Vault Console's main window. The next piece of information
you must provided is the port number used to listen on for multimaster protocol.

Note: The multimaster protocol (named MESH) is propietary, and so must listen
on a distinct and specific port. The default port is 20000, though you are free to
select any other available port for this purpose.

9.2.3 Managing the multimaster group

A multimaster group is a set of Directory Servers that are replicating directory information
between them. Any information that is replicated between any two members of this group
must be replicated between all members of the group, i.e. there is no support for partial
replication within a group. Individual servers may master data, in a particular GDAM, that
is not shared between the group. Such locally mastered may be added to the set of replication
agreements at a later date.

High Availability

139M-Vault Administration Guide

The status of the set of known multimaster groups can be seen by selecting the Multimaster
tab of the main window, as shown in figure Figure 9.1, “Multimaster group status” below.

Figure 9.1. Multimaster group status

The view provides the status information below:

1. Per-server state, specifically whether the server is on or offline. Servers are listed by
their DN (in the Name column), as well as by an integer server identifier (in the ID
column.

2. Per-agreement state. Whether the agreement is synchronized with any other server. The
State column for agreements also shows which other servers have been synchronized
for a particular agreement by listing the set of synchronized server identifiers. In addition
the time of the last change received is reported. Note that if the last update received was
a total update then Unknown is reported.

9.2.3.1 Adding multimaster replica servers

To add a multimaster replica select a source DSA from the main window and then select
Create → Multimaster Replica Server. The server that is selected in the main window
will be the initial source for the new replica, i.e. it will configure and provide initial updates
to the new replica.

Note: When creating a new multimaster replica server, as with creating any new
server, M-Vault Console must be running on the same system as the server that
is to be created.

You will then be presented with a wizard which asks the following:

1. The unique server name, the Distinguished Name, of the new Directory Server. This is
the DN used by the server to identify itself to other members of the multimaster group.

2. The password of the new manager. There are two cases here:

a. If the manager bind profile of the source server is not cn=DSA Manager,cn=config,
the password stored in the bind profile is used for the mirror bind profile.

b. Otherwise, a password is requested which does not have to be the password of the
current manager.

3. The bind profile name, where the bind profile will connect to the new failover mirror
using the manager’s credentials.

4. The file-system directory in which the new server will be created.

5. The presentation address, including MESH address component, that the server will listen
on.

High Availability

140M-Vault Administration Guide

Once the new server has been created it will connect to the source server to get the
multimaster configuration and the body of replicated data. Once this is complete the server
will be ready for operation.

9.2.3.2 Removing multimaster replica servers

It is not currently possible to remove servers from a multimaster group, though this feature
will be implemented shortly.

9.3 Hot-standby clusters

This section describes how to configure a Directory Server in a hot-standby cluster, which
is a mode where the Directory Server databases are on a disk shared between all the nodes
in the cluster, and where the clustering software arranges for only a single instance of the
Directory server to be running at any one time. When the clustering software detects a
hardware or software failure on the active node, it fails over the active node and activates
the Directory Server on another node.

When configuring a cluster, it is important to note that there are multiple network addresses
being used, and it is critical to use particular network addresses at particular points. Mistakes
here will cause DSP and DISP connections from other Directory Servers to fail.

9.3.1 On Unix systems

1. On each node in the cluster-to-be, install M-Vault on the node’s local disks.

2. On the node which has the shared disk mounted:

a. Move the /etc/isode and /var/isode directories onto the shared disk, and make symbolic
links from /etc/isode and /var/isode to the new locations.

b. Copy /etc/isode/dsa.rc.sample to /etc/isode/dsa.rc.

c. Configure the DSADIR value, pointing at the shared disk.

d. Configure the DSACHECK value, using the localhost address.

e. Use M-Vault Console to create a new Directory Server on the shared disk. Make
sure the presentation address uses the service’s network address, not the node’s local
network address.

Note: You will not be able to connect to the Directory Server using M-Vault
Console until the clustering service has been created

f. Verify that the Directory Server can be started, stopped, and its status checked using
the normal startup scripts (make sure the server is stopped at the end):

/etc/rc.d/init.d/dsa start

/etc/rc.d/init.d/dsa status

/etc/rc.d/init.d/dsa stop

g. Change the DSACHECK variable to the service’s shared network address.

h. Unmount the shared disk.

3. On every other node, replace the /etc/isode and /var/isode directories with symbolic
links to the locations on the unmounted shared disk.

High Availability

141M-Vault Administration Guide

4. Now use the Red Hat clustering software to set up a new service (the Directory Server)
on the shared disk. The controlling script for the service is /etc/rc.d/init.d/dsa. Assign
a name to the clustered service, for example M-Vault.

5. The cluster should now be operational with one node. Enable the Directory Server
service. You should be able to connect to the Directory Server using M-Vault Console.

Caution: Do not attempt to start and stop the Directory Server using M-Vault
Console, as this will confuse the clustering software.

6. Exit from M-Vault Console, and disable the Directory Server cluster service (i.e.
M-Vault).

7. Now enable clustering on each node. Finally start the Directory Server service (i.e.
M-Vault) using the cluster manager software.

9.3.2 On Windows systems

On Windows systems, each node in the Windows cluster must be a member of the same
Windows networking Domain. The cluster has a name, and a shared IP address.

1. Install the clustering service on each node in the cluster-to-be:

a. Open Start → Settings → Control Panel → Add/Remove Programs →
Add/Remove Windows Components . Select the Clustering Service box.

b. Follow the instructions, specifying the cluster name and the shared cluster IP address
when prompted.

c. If this is the first node in the cluster-to-be, reboot the machine and start the cluster
service. Repeat steps 1 and 2 for the other nodes.

2. Install the M-Vault software on each node. Ensure the other nodes are disabled, and
that the node being installed has the shared disk mounted. Halt each node before installing
the next node. If prompted, you should overwrite the installation files on the shared
disk.

On the node with the shared disk mounted:

a. Use M-Vault Console to create a new Directory Server on the shared disk. Make
sure the presentation address uses the cluster’s shared network address, not the node’s
local network address. Do not start the Directory Server at this point.

b. Open Start → Programs → Administrator Tools → Cluster Manager .

c. Right-click on Resources, select New and Resource.

d. Choose a name for this resource, e.g. Isode Virtual Server. Select IP Address
from the pull down menu. Click Next.

e. Make all of the nodes possible owners. Click Next.

f. Add the shared disk as a dependency. Click Next.

g. Enter the cluster’s shared IP address and netmask. Choose a name for this resource,
e.g. M-Vault. Click Next.

h. Make the service available to all nodes. Click Next.

i. Add the shared resource (e.g. Isode Virtual Server) as a dependency. Click Next.

j. Enter isode.x500dsa as the service name and in the other field type in the Directory
Server’s configuration path in the form -D configuration path . Click Next.

k. Click Next again (you don’t need to add any shared registry keys.)

l. Right-click on the shared service (e.g. Isode Virtual Server) and bring it online.

The Directory Server should now be operational, and you should be able to connect to it
from any machine, and from M-Vault Console.

High Availability

142M-Vault Administration Guide

Test manually failing over the service by right-clicking on the shared drive within the
Cluster Manager, selecting Advanced and the Do not restart option. Click OK, right-click
on the shared disk again, and select Initiate failure.

High Availability

143M-Vault Administration Guide

Chapter 10 HTTP And OCSP Services
M-Vault incorporates a Web server that can be used to serve the following:

• PKI information - HTTP serving of PKI and CA related directory entry attributes (e.g.
certificateRevocationList).

• Web applications - currently a Web application (and underlying API) providing an
account password modification user interface.

• OCSP service - provision of OCSP (Online Certificate Status Protocol) services on the
basis of stored CRLs.

This chapter describes how to configure these services using M-Vault Console and Sodium.

10.1 Configuring HTTP Services

This section covers configuration of the HTTP listener, particularly for the serving of Web
applications (e.g. the password modify API and Web application) and PKI information as
stored in entry attributes (for example user cross certificate pairs and CRLs).

To enable the HTTP service first connect to the directory server using M-Vault Console,
then navigate to the HTTP page of the Configuration group. Set the Service Enabled
checkbox and then specify the listen address by supplying a hostname (or select All
Interfaces to listen on all network interfaces) and a set of port numbers for provision of
Web services over HTTP or HTTPS.

Note that:

• A restart of the Directory Server will be required before the HTTP service is enabled or
if the set of listen ports has been changed.

HTTP And OCSP Services

144M-Vault Administration Guide

• The HTTPS service will only function correctly if a suitable TLS identity has been
configured (see Section 3.10.1, “Generating a certificate request”).

10.1.1 Configuring the Password Modify Web Application

To enable the password modify Web application, first enable the HTTP responder (see
Section 10.1, “Configuring HTTP Services”), and then check the Enabled button in the
Password Modify Application section of the HTTP page of M-Vault Console. A directory
server restart is required before the application is served. Note also that a valid SASL
configuration must be present before the password change Web application can function
correctly, as the user ID requested in the user interface is the SASL ID.

Note: In this release password changes made using the Web application are not
replicated in multimaster. Such changes are replicated in failover and shadowing
(i.e. X.500 DISP). Support for multimaster will be added in an R19.0 update
release.

Two options are provided that control access to the Web appplication:

• HTTPS only Whether the application should be served over HTTPS only (i.e. not over
HTTP). It is highly recommended that this option is enabled, as otherwise passwords
will be transmitted over the network in the clear.

• URL path prefix Specify a URL path prefix that is used to select the Web application.

If a URL path prefix of password is specified and HTTPS enabled then a URL like the
one below would direct the browser to the Web application:

https://www.example.com:8443/password

The Web application is compatible with Internet Explorer 11, Microsoft Edge, and recent
versions of Chrome and Firefox.

10.1.2 Publishing PKI Information Over HTTP

PKI information served by the Web server is configured on a per-entry basis, through use
of the isodeHTTPDirective attribute. Note that the isodeHTTPDirective attribute is an
optional member of the isodeHTTPResource object class and the object class of any entry
providing an HTTP served resource needs to be updated to include this value first. Values
of isodeHTTPDirective consist of a set of fields that control how information is served.
Some of these fields are common and some are specific to the resource type. The sections
below describe how each served type is configured.

10.1.2.1 Revocation List

The directive consists of a set of fields separated by a $ character (the string representation
of a CaseIgnoreList). Each field consists of a key and value pair of the form key=value.
The fields are as follows:

• type - The attribute type. For revocation lists this can be certificateRevocationList or
authorityRevocationList.

• resource - The path of the resource, as expected in the right side of the HTTP URL.

• filename - The value of the filename field to be in the returned HTTP header.

An example of a valid value is below:

type=certificateRevocationList$resource=crl/ca.crl$filename=ca.crl

HTTP And OCSP Services

145M-Vault Administration Guide

The HTTP header returned with requests for revocation lists contain a number of fields
and values that are specific to the list being returned. An example HTTP response header
is:

HTTP/1.1 200 OK
Content-Type: application/pkix-crl
Content-Length: 538
Content-disposition: attachment; filename="ca.crl"
Etag: "ddfa3bd3d0da544b079b581e5505a37b047371a1"
Last-Modified: Thu, 24 Oct 2013 08:34:05 GMT
Expires: Fri, 25 Oct 2013 02:33:05 GMT
Cache-Control: max-age=3600
Server: M-Vault/16.1
Date: Fri, 29 Nov 2013 12:22:29 GMT
Accept-Ranges: none
Connection: close

Fields specific to revocation lists are:

• Content-Type: Value always application/pkix-crl.

• Etag: SHA-1 hash of the CRL.

• Last-Modified: The time the CRL was updated. Derived from the value of
thisUpdate in the revocation list.

• Expires: The time at which the CRL is due for renewal. Derived from the value of
nextUpdate in the revocation list.

• Cache-Control: max-age= The number of seconds until the next time CRL is due
to be updated.

10.1.2.2 Cross Certificate Pair

The directive consists of a set of fields separated by a $ character (the string representation
of a CaseIgnoreList). Each field consists of a key and value pair of the form key=value.
The fields are as follows:

• type - The attribute type. This must take the value crossCertificatePair.

• resource - The path of the resource, as expected in the right side of the HTTP URL.

• filename - The value of the filename field to be in the returned HTTP header.

• scope - Optional field which can be used to limit the set of certificates included in the
output bundle to those issued by this CA (issued_by) or those issued to this CA
(issued_to).

Examples (omitting the type=crossCertificatePair field for the sake of brevity):

resource=issuedBy.p7c$scope=issued_by$filename=issuedBy.p7c
resource=issuedTo.p7c$scope=issued_to$filename=issuedTo.p7c
resource=all.p7c$filename=issuedTo.p7c

10.2 Configuring OCSP

To enable the OCSP service first connect to the Directory Server using M-Vault Console,
then navigate to OCSP page of the Configuration group. Set the Service Enabled checkbox
and then specify the listen address by supplying a hostname (or select All Interfaces to

HTTP And OCSP Services

146M-Vault Administration Guide

listen on all network interfaces) and a set of port numbers (which must not overlap with
any ports used to serve HTTP). Note that the Directory Server will not start serving OCSP
until it has been restarted.

Once the OCSP listener has been enabled one or more logical services need to be set up,
where each logical service corresponds to a single CA.

10.2.1 Configuring a Logical OCSP Service

A logical OCSP service corresponds to the OCSP provision for a single given CA, and
multiple logical OCSP services can be configured for provision by M-Vault. To support
OCSP for a CA the M-Vault instance must contain the CA or CRL DP (CRL Distribution
Point) directory entry that contains the relevant CRL. To configure a service on that basis
navigate to the OCSP Services tab of the DSA's properties window.

In order to setup an OCSP service for a CA, select Create → OCSP Service from the
toolbar. A dialog will appear to provide the following details.

• Service Name An informal string value used to identify the OCSP service.

• CA Certificate The CA's certificate. This is used to derive hashes of the CA's name and
public key, as these are required in the OCSP protocol. Note that the Distinguished Name
(DN) of the CA entry is derived from this certificate and this is where the OCSP
implementation will look for the relevant CRL.

The following figure illustrates the MVC window after an OCSP service has been created
as a first step:

HTTP And OCSP Services

147M-Vault Administration Guide

Once a service is created, the next step is to create a Response Signing Key which is the
identity used to sign OCSP responses. This can be the CA's identity or, more likely, an
identity certified by the CA for the specific purpose of signing OCSP responses. An OCSP
signing identity will most likely be conferred the id-pkix-ocsp-nocheck identity, as
this tells the OCSP client not to perform full path checking of the response signature. This
identity should be provided in a PKCS#12 file and associated passphrase as held on the
server. The PKCS#12 file should contain the signing key and, at a minimum, the certificate
of the signing identity.

The UI on selecting the Signing Identity tab will guide you with the process of generating
a signing Identity for the OCSP service if one does not exist. The steps for generating an
Identity are similar to the ones as described in Section 3.10.1, “Generating a certificate
request”. Alternately, you can pick an existing PKCS#12 file if a signing identity exists
for the CA.

HTTP And OCSP Services

148M-Vault Administration Guide

Existing logical OCSP services can later be removed or modified in order to change the
CA certificate or response signing identity by selecting the service on the OCSP Services
tab.

HTTP And OCSP Services

149M-Vault Administration Guide

Chapter 11 Monitoring the Directory
The Directory Service can be monitored in several ways. Logs can be inspected, and certain
status information and statistics are kept by the system which can be displayed.

11.1 Logging

This section begins with the use of M-Vault Console to configure logging. This is followed
by an overview of the general structure of the Isode logging subsystem.

Note: Since in most cases you will be using M-Vault Console to view and update
logging configuration, it is not necessary to be familiar with the details of the
logging implementation, but it may be useful to have an understanding of some
of the concepts involved.

11.1.1 How logging works

This section contains information to help you understand the content and configuration of
log files in more detail.

11.1.1.1 Record types

All Isode applications generate two types of log records during normal execution: audit
records and event records.

• Audit records are used to record “auditable events” – Directory Server startup and
shutdown, for example. Audit records do not have a severity level associated with them,
and have a well-defined format, so that they can be easily parsed.

• Event records are used to record errors, normal program operation, or to provide
debugging information. They are associated with a particular severity level, and contain
free-form text with substituted data items. The free-form text is contained in a separate
dynamically-loaded library (on Windows) or a message catalog (on UNIX), which makes
it possible to replace the standard set of English messages with equivalent text in other
languages simply by substituting a suitable message file.

No output mechanism is directly associated with log records. When an event or audit record
is generated by an application, then whether or not it is logged, where it is logged to, and
what the output of the log looks like, depends on what output streams have been configured.

11.1.1.2 Output streams

An output stream is a description of how a particular set of event and audit records should
be recorded or displayed. Multiple output streams may be configured for an application,
and whenever an event or audit record is generated, the logging subsystem checks to see
which, if any, of the available output streams is eligible to process it.

As well as defining which records are eligible to be logged, the configuration of an output
stream also determines the format of the messages that are produced by the stream.

This means that a single event or audit record may be processed by one or more separate
streams (or by no stream at all), and that, in the case of multiple streams, the messages
output by the streams may be of differing formats, containing more or less detail. For
example, it would be possible to configure one output stream to generate a brief message

Monitoring the Directory

150M-Vault Administration Guide

about all “warning” level events, and another to generate a detailed message about a specific
“warning” event which is of particular interest.

Five stream types are currently available:

• the file type, where the records are output to a file

• the mpp type, which sends logging over the network to Isode’s server watch daemon,
which enables further processing and/or consolidation.

• the system type, where the records are passed to the system event log (syslog on
UNIX-type systems and the Application Event Log on Windows)

• the tty type, which is identical to file type, except that the records are written to either
stdout or stderr

It is possible to access log files remotely. If M-Switch is co-located, the Queue Manager
provides remote access to authenticated clients. If M-Switch is not being used, Isode’s
eventd server can be used instead. See Section 11.1.5, “Remote monitoring of log files”
for more details.

11.1.1.3 Format of messages in output streams

When a given audit or event is generated, then for each output stream that is configured to
process records of that type, the settings for the output stream determine the format of the
message that is output. In the case of file and tty streams, the stream may be configured
to contain any combination (including none) of the following fields:

• date and time: the format of date and time is configurable on a per-stream basis.

• program name: the name of the program generating the message. Any “isode” prefix
will have been removed, and the program name will be truncated to 8 characters.

• process id

• thread id: this field may be useful to distinguish separate threads in the same process.

• username: the username of the process which generated the record. This field is only
meaningful on Unix systems. If the username cannot be established, then a numeric UID
is logged.

• severity: audit records have no associated severity, but event records always have a
severity, which, if displayed, is represented using one of the following single letters, as
follows:

D – DetailS – SuccessN – NoticeI – Info

C – CriticalF – FatalE – ErrorW – Warning

P – PDUX – DebugA – AuthfailL – AuthOK

• facility code: the name of the facility which generated the message. Audit records are
not associated with a particular facility.

• message identifier: an identifier representing the event. Audit records do not have a
message identifier.

• text: the formatted text describing this event. Audit records do not have a text field.

• supplementary audit record parameters

For certain types of audit records, extra information may be associated with the record,
and if the stream is suitably configured, this will be included as a sequence of “key:value”
pairs on the end of the message.

As an example, consider that a Directory Server generates both an audit record and an
event record when it is shut down. Assuming audit and event streams have been created
to capture such records, and that the streams are configured to display all possible fields,
then the resultant message from the audit output stream will look like this:

Monitoring the Directory

151M-Vault Administration Guide

2019-08-08 15:22:56 x500dsa 12068 (root) Stopped

while the corresponding event record will look like this:

2019-08-08 15:22:54 x500dsa 12068 (root) N-DSA-ServiceState
 state:Stopping name:"cn=DSA1,c=xx"
 dir:"/var/isode/master-dsa-db"
2019-08-08 15:22:56 x500dsa 12068 (root) N-DSA-ServiceState
 state:Stopped name:"cn=DSA1,c=xx"
 dir:"/var/isode/master-dsa-db"

In both cases, the date, program name (x500dsa), process and thread id (00464.00150)
and username (root) are included.

The event record contains severity (N, for “Notice”), facility (DSA) and identifier
(ServiceState) of the event, as well as a number of event specific fields, e.g. name (the
DN of the DSA that stopedd).

The audit record above is identified by the fixed string Stopped. This type of audit record
has no associated supplementary parameters. For audit records which contain supplementary
information, this will (assuming the stream is configured to display them) be shown in the
log as a sequence of key:value pairs, for example:

2019-08-08 13:47:33 x500dsa 12068 (root) Search-res-out
 id:16 assoc:21 hits:1

In this case, the Search-res-out operation (search result sent out to client) is logged
with three supplementary parameters, assoc (the network connection ID), id (the operation
invocation ID) and hits (the number of matches found).

11.1.1.4 Logging configuration

Information about output stream configuration is stored as XML data. All Isode applications
will load the XML contained in the file logtailor.xml, if it exists, at startup. The search
path for logtailor.xml is first (ETCDIR), and then (SHAREDIR). The filename and location
can be overridden if required by defining the environment variable LOGTAILOR to be an
alternate filename or filepath.

An application may then load a private stream configuration. For Isode DUAs (such as
M-Vault Console, Tcldish, and Sodium), this is contained in the dualogging.xml file, located
in either (ETCDIR) or (SHAREDIR). In the case of M-Vault Directory Servers, the
corresponding dsalogging.xml file contains configuration used for the period when the
Directory Server is being started, but in normal operation, the logging configuration is
maintained as part of an entry inside the Directory itself.

While it is possible to edit the XML files using a normal text editor, the managing of logging
streams is typically performed using a GUI, which is run either as a standalone tool (in the
case of individual XML files, see Section 11.1.3, “Using the standalone logconfig tool”),
or within M-Vault Console (to manage Directory Server logging configuration, see
Section 11.1.2, “Changing Directory Server logging using M-Vault Console”).

11.1.2 Changing Directory Server logging using M-Vault
Console

You can use M-Vault Console to configure logging for your Directory Server.

Connect to the Directory for which you want to configure logging and click the Logging
tab.

Monitoring the Directory

152M-Vault Administration Guide

Figure 11.1. Configuring logging in M-Vault Console

1.

2.

3.

4.

5.

1. Two different record types (see Section 11.1.4, “What is written to the log files?”) are
shown on the left (Audit and Events):

• If you select Audit (as shown above), the information on the two pages on the right
relates to the audit record type and the second page on the right is called Audit
Logging.

• If you select Events, the information relates to the event record type and the second
page is called Event Logging.

2. Either Browse to find a suitable directory in which to store the log files, or click Use
Default.

The Log file Name is shown by default. For the Audit log it is dsa-audit.log and for
the Event log it is dsa-event.log.

3. You can choose to create a new log file at regular intervals. The default is for a new file
to be created daily, but you can change this to hourly or weekly if you prefer. The name
of the log file contains the date and time at which it was created; for example,
dsa-event.2010-06-13-00-00.log

Click Advanced to specify more details.

Monitoring the Directory

153M-Vault Administration Guide

• Log File Path information is as on the basic page.

• Set File Permissions You can set read, write and execute file permissions.

• Log to Open File descriptor number Enter the integer that identifies the file.

• Close file after a message is written The file is opened to write the message and
closed again immediately afterwards. This helps to ensure security of the data but
there is a significant performance overhead.

• Sync log messages to disk asks the operating system to ensure that messages are
written to disk. The helps to ensure security of the data but there is a significant
performance overhead.

• (Windows only) Lock the file prior to writing the message ensures that if multiple
processes are logging to the same file, the messages are not mixed.

• Rollover Settings for the File sets a rollover interval for the file and enables you to
specify an offset from the default start point of the specified period. For example, the
default start time for a daily roll-over is midnight, and the default start point for a
weekly roll-over is 00:00 hours on a Sunday.

4. Click Edit Formats to change the content of the log file. Examples are shown of the
current format in the Preview area – you may need to enlarge the window to see them.

Monitoring the Directory

154M-Vault Administration Guide

• Select your preferred date format from the options available. The default is
YYYY-MM-DD HH:MM:SS.

• Select any additions you want to make to the timestamp.

• Select any fields you want to be included or excluded from the records. This option
is: a green tick specifies that a field will be included, a red cross specifies that it will
not. Leave the option blank if you do not want to specify.

11.1.2.1 Audit logging

Choose whether to record no audit information, all audit information or specific audit
information. If you chose Specific Audits, click Edit to select the ones to include.

The example above shows that all Record Types and all Data Keys will be included.

Monitoring the Directory

155M-Vault Administration Guide

• Click an item to include it.

• Click a included item to exclude it.

11.1.2.2 Event logging

First choose the level of event logging you want to include in the log files.

If you chose Custom Events, click Edit... to specify them.

Note: To see what is included and excluded at each level, select the level and
click Edit.... The example below shows what is included when Log errors and
warnings is selected.

Click Advanced... to specify in more detail exactly what you want to log.

Note: A tool tip is displayed if you hover your mouse over an entry giving details
of the type of event referenced by that entry. For example, Address displays
Messages relating to OSI address handling.

Monitoring the Directory

156M-Vault Administration Guide

• Global... takes you to the Global Logging Levels window (above).

• To specify more details about a particular event type, select it and click Edit....

11.1.2.3 Creating a new logging stream

You can create a new logging stream for information of a particular type or from a specific
tool or program. To create the new log stream:

Click Create on the tool bar and select Log Stream from the options displayed. Follow
the instructions given in Section 11.1.3, “Using the standalone logconfig tool”, except that
you will not need to specify the Application Type.

Monitoring the Directory

157M-Vault Administration Guide

11.1.3 Using the standalone logconfig tool

This section describes the use of the standalone logconfig tool, and as an example shows
how you can create new log streams in the logtailor.xml file. This file, if it exists, is loaded
by all Isode applications, although in most cases the application will go on to define and
use application-specific streams. This section assumes that no previous version of
logtailor.xml exists in (ETCDIR).

On UNIX systems, run /opt/isode/sbin/logconfig

On Windows, a shortcut to the Log Configuration Tool will have been set up in the Isode
folder on your Start menu.

If no logs have been configured, the tool opens displaying a window ready to create a new
logging configuration.

1. Select M-Vault from the list in Application Type (assuming you are creating a
configuration for the Directory Server).

2. The default Name will change to a new name if you change the Type or Stream Subtype
(final options).

3. If you want to associate this particular logging stream with a program or utility, type
its name in Program. For example, if you want to create a logging stream for the dbulk
utility, type dbulk here. If you do not specify anything here, this stream will be used
for all programs and utilities.

4. Select the Logging Type: ALL, DETAIL, ERROR, NONE or WARNING.

5. Select the Type of output (see Section 11.1.1.2, “Output streams” for an explanation of
the options available).

6. Select the Stream Subtype. This option is only available if FILE or TTY was selected
in Type. You can choose from AUDITS, EVENTS or AUDITS_AND_EVENTS.

Once the stream has been created, it should be set to output to a suitable log file, and will
be used by any application which uses logtailor.xml. The stream may be configured using
the various available tabs.

Monitoring the Directory

158M-Vault Administration Guide

Since logtailor.xml is potentially used by multiple Isode programs, you may wish to create
several program-specific streams. To create a new stream, select Stream → Add from the
menu.

All of the other configuration options available in the standalone logconfig tool are identical
to those within M-Vault Console, and are described in Section 11.1.2, “Changing Directory
Server logging using M-Vault Console”.

11.1.4 What is written to the log files?

The default configuration for an M-Vault Directory Server provides two file output streams:

• The Events stream captures all event records with severity of Notice (N), Warning (W),
Error (E), Fatal (F), Critical (C), or AuthFail (A). These are output to dsa-event.log in
(LOGDIR).

If you are reporting a potential bug to bug-report@isode.com, then it may be useful to
configure the Events stream (or to create another output stream), so that while reproducing
the problem, all levels of event records are logged. The resulting output should then be
included in your report.

Note: Operational Directory Servers should not be run with full logging, as
this can significantly impact performance (and use up large amounts of disk
space).

• The Audit stream captures all audit records, with the exception of those relating to
“internal” events, and outputs them to the dsa-audit.log in (LOGDIR).

The following sections describe logging behaviour when these default settings are in effect.
However, since the streams are fully configurable, and streams may be added or removed,
it may be that the filenames and file contents will be different on a given system.

11.1.4.1 Events stream

Note: The file dsa-event.log, in (LOGDIR), is roughly analogous to the dsap.log
file which was used in pre-11.0 releases of M-Vault.

Monitoring the Directory

159M-Vault Administration Guide

mailto:bug-report@isode.com

A new record is appended to it whenever the Directory Server generates an event with a
severity level of N, W, E, F, C or A (see Section 11.1.1.3, “Format of messages in output
streams”). Problems that prevent the Directory server from operating correctly have a
severity level of E, F or C. Possible problems that may be worthy of investigation have N,
W, or A severity codes.

For an example of what the contents of dsa-event.log look like, see Section 11.1.1.3,
“Format of messages in output streams”.

11.1.4.2 Audit stream

Note: The file dsa-audit.log, in (LOGDIR), is roughly analogous to the dsa.log
file which was used in pre-11.0 releases of M-Vault.

A new record is appended to this file whenever an auditable event, such as an incoming
connection, or a Directory Server shutdown, is generated by the Directory Server.

Each audit record may include supplementary information which is shown as a sequence
of key:value pairs. The types of audit records that may be logged, with their corresponding
supplementary parameters, are described in the following sections. Bear in mind that it is
possible to configure a stream so that audit message parameters are omitted from the log
file; the examples below assume that all parameters are being logged.

11.1.4.2.1 Process start and termination

When the Directory Server has read its configuration files and initialized the GDAMs, a
Started(dsa, version, info) message is logged. For example:

2019-08-07 13:57:50 x500dsa 12068 (root) Started
 dsa:cn=DSA,c=xx version:R18.0.0.0
 info:"Copyright (c), Isode Limited, London, England."

When the Directory Server shuts down, it logs a Stopped message (which has no associated
parameters):

2011-03-15 15:39:40 x500dsa 13120 (root) Stopped

11.1.4.2.2 Association management

The start of an incoming association to the Directory Server is logged with a Bind-op-in,
e.g.:

2019-08-08 16:01:32 x500dsa 01819 (root) Bind-op-in
 id:0 assoc:21 context:DAP type:Anon
 addr:Internet=127.0.0.1

The possible values of context are:

• DAP

• DSP

• LDAP

• DISP

When the association is terminated by the client Unbind-op-in(assoc) is logged. The
dn parameter may be empty, in which case it will not be logged:

Monitoring the Directory

160M-Vault Administration Guide

2011-03-16 12:44:18 x500dsa 13120 (root) Unbind-op-in assoc:48

Outbound associations may also be made, for example when the server is chaining client
operations or when replicating (DISP or multimaster). The example below shows an
outbound shadowing (DISP) bind request:

2019-08-08 16:30:45 x500dsa 01819 (root) Bind-op-out
 assoc:22 context:DISP
 addr:"URI+0000+URL+itot://shadow.isode.net:19999"

11.1.4.2.3 Incoming and outbound operations

Audit records are logged for the following operations Read, Compare, Abandon, List,
Search, Add, Remove, Modify, ModifyDN and PasswdModify. Common parameters
for each of these records are (assoc, id, dn, param, requestor, sig). Search also
supports a filter parameter. For example:

2019-08-08 16:15:07 x500dsa 01819 (dsm) Search-op-in
 id:1 assoc:21 dn:<empty> scope:Subtree
 filter:sn=smith user:* oper:* vals:1

Each operation audit record comprises three components in the record name:

• Operation, e.g. Search

• PDU type, which is one of op (invocation), res (result) or err (error).

• Direction, which is one of in (inbound PDU) or out (outbound PDU).

11.1.5 Remote monitoring of log files

Access to the log files can be provided to clients running the Isode Event Viewer application.
This can monitor specific files, or all log files, and is also able to provide details on specific
error messages. For more details on the Event Viewer application, see the M-Switch
Administration Guide.

The Event Viewer application connects to, and authenticates with, an instance of the Isode
eventd server.

To configure the authentication parameters, edit the (ETCDIR)/isotailor file (a sample file
is provided) and set the value for the eventd_auth key to the desired user ID and password.

To enable the server on Windows, start it using the Isode Service Manager as described in
Section F.1, “Linux services”.

To enable the server on other platforms, edit (ETCDIR)/dsa.rc and set the USE_EVENTD
variable to “yes”.

Monitoring the Directory

161M-Vault Administration Guide

Chapter 12 Synchronising Directories (using
Sodium Sync)
This chapter explains how to use Sodium Sync for synchronizing data between directories,
LDIF files, CSV files and SQL databases.

12.1 Overview

Sodium Sync provides a mechanism to copy a set of data from a source Directory Server
to a target Directory Server, and to ensure that the target remains up to date by performing
regular updates to take account of any subsequent changes in the source Directory Server.

Synchronization occurs in one direction only: whilst changes, additions and deletions made
to data held on the source Directory Server will be copied to the target, any local changes
made to data in the target Directory Server will not be copied back to the source, and will
normally be lost when the next synchronization operation takes place.

In particular Sodium Sync is designed to be able to handle synchronization from non-Isode
DSAs (for example Active Directory) to Isode’s M-Vault. Sodium Sync has a number of
features to make it easier to deal with translation between directories which are not
completely compatible with one another.

When configuring the synchronization operation, Sodium requires that you specify:

• the base of a subtree in the source Directory from which entries will be copied

• the location of the entry in the target Directory that will form the base of the copied
subtree; any existing entries under this base entry on the target will be deleted

Sodium Sync will automatically rename entries if the source and target base DNs are
different, and it is possible to synchronize between two separate subtrees on the same
Directory.

In more advanced use, Sodium Sync also allows the specification of:

• constraints which limit the area beneath the subtree which will be copied

• a search filter which can be used to determine which entries from the subtree are included
in the copy operation

• rules which determine which attributes within an entry are copied

• rules which determine how particular attribute values are copied or translated between
different systems

• rules which may result in new attributes and values being added to the data on the target
Directory

• rules which modify the RDN of entries as they are moved

• how to handle orphan entries: by reparenting them (flattening the tree), or by replacing
the missing parents

In addition, it is possible to perform synchronizations that operate partially or completely
on LDIF or CSV files or SQL databases instead of directories. For example:

• compare source and target trees on directories and generate a change-LDIF (an LDIF
containing change records) instead of applying the changes to the target

Synchronising Directories (using Sodium Sync)

162M-Vault Administration Guide

• apply a previously generated change-LDIF to a target Directory

• compare a subtree from LDIF, CSV or SQL with a subtree from a Directory to generate
changes (i.e. synchronize from LDIF)

• compare two LDIF subtrees (from the same or different LDIF files) to generate changes.

In more recent releases, the Sync has been extended with features to handle additional
variations on the basic synchronization process. For example:

• A ‘cached’ sync mode which does not require access to the target DSA in order to
generate changes. This is suitable for ‘air gap’ synchronization, or sync-over-Email, or
when the remote server is on a slow network connection.

• Queues and hook support, to handle situations where external scripts or executables must
transmit, receive or otherwise process the input or output of the sync. This also integrates
with the M-Switch FTBE (File Transfer by E-mail) functionality to enable synchronization
over E-mail.

• Correlated ‘merge’ syncs (Section 12.8, “Correlated syncs” and Section 12.4, “Setting
up a merge-sync”), where two sources with different information structures are correlated
by exact or inexact matches on a certain key piece of information that they have in
common (for example an ID number, or a user’s full name). When those correlations
are approved, selected pieces of data may be synchronized from one side to the other,
merging them into the existing data.

• Replication Workflow with Checks (Section 12.7, “Sync groups and replication
workflow”), where a number of syncs run in sequence, and the sequence can be aborted
if any sync fails, or if any configured check fails.

The following sections provide more detailed information on how Sodium Sync is
configured. There is also a discussion of an example set of mapping rules which can be
used to synchronize between Active Directory and M-Vault.

12.2 Setting up a simple sync from Active
Directory

In this example we will configure a simple synchronization between Active Directory and
M-Vault, using the default mapping rules.

Sodium Sync is configured and controlled from the Sync Profile Manager. This is started
from within a Sodium session by selecting Session → Sync → Manager from the menus.
The Sync Profile Management window shows all configured sync profiles and the next
synchronization time for scheduled profiles.

Synchronising Directories (using Sodium Sync)

163M-Vault Administration Guide

Figure 12.1. Sync Profile Manager dialog

To set up a simple synchronization from Active Directory to M-Vault:

1. Click New...

The New Sync Profile box is shown.

2. Give the profile a name.

3. Select Sync Active Directory to M-Vault (or to generic LDAP Server).

4. Click OK.

The Sync Profile Editor is displayed, in simple view.

Synchronising Directories (using Sodium Sync)

164M-Vault Administration Guide

The flow diagram shown in the editor illustrates the flow of data during the
synchronization process: in this case, source DSA subtree entries are read, then mapped
using the Active Directory mapping rules, glue entries are added if required, and then
this is compared to the target DSA subtree to find what changes need to be made, which
are finally applied to the target DSA.

5. Click the Source and Target tab.

Enter the source and target bind-profile information and starting-point DNs. For example,
the starting-point DN for Active Directory might be cn=Users,dc=acme,dc=com, and
the starting-point DN on M-Vault might be cn=AD-Users,c=US, which is a container
entry you should create separately.

Finally , and then on OK to save the profile.

6. Click the Scheduling tab to enter scheduling details, if required.

7. Click OK.

Note: Unattended synchronization will only happen if the bind profiles have
associated passwords. This means you must encrypt your bind profiles (by clicking
Encrypt... in the Bind Profile Manager window) and enter passwords for the
bind profiles if this has not already been done.

Caution: Any existing entries under the target starting-point DN will be deleted
by the synchronization operation. These entries will be replaced with the subtree
synchronized from the source Directory. This is the reason why a container entry
is normally used, rather than synchronizing directly to a top-level DN like c=US.

12.2.1 Modifying a profile

To modify a profile, go to the Sync Profile Management window, select the profile you
want to change and click Modify...

Synchronising Directories (using Sodium Sync)

165M-Vault Administration Guide

12.2.2 Running a sync

• To run a sync manually, go to the Sync Profile Management window and click Run
Sync.

Note: Any errors are shown on a Log page that will be available from the main
window.

• Scheduled syncs will only run if the Sync Server is running (see Section 12.10,
“Configuring Sodium Sync Server”). You may close the Sync Profile Management
window, unbind from any DSA, close Sodium and log off your session without affecting
the operation of scheduled syncs.

The status information shown in the Sync Profile Management window is updated
when a sync occurs, and a message is added to the DUA event logs to record the event.

If errors occur, then the first few messages may be displayed by double-clicking on the
sync name or by selecting Show Status either from the right-click menu or by clicking
Menu... and selecting from there. The full list of errors will be written to the DUA event
log stream, which by default means that they will be found in the DUA event log files.

12.3 More advanced use of Sodium Sync

The advanced view in the Sync Profile Editor exposes the full current functionality of
Sodium Sync, with some future planned functionality shown greyed-out.

Figure 12.2. Advanced view of the Sync Profile Editor

A few parts need explanation:

• The Source page has an option for Optimised data pre-fetch. When this option is
selected, all the data from the source directory is fetched in one pass, using as few

Synchronising Directories (using Sodium Sync)

166M-Vault Administration Guide

directory operations as possible. It is temporarily cached to disk, and then the main part
of the sync proceeds using the cached data as source. This is useful when the source
directory is remote with a large round-trip-time which makes requests slow. This requires
that the source directory support page results or large searches, so it will not work with
all directories.

If possible, the data is fetched using a single LDAP search. However in the case of
chop-points in the Entries tab, the search must descend one level at a time down to the
level of the chops-points in order to exclude them. In addition if Also apply filter to
parent entries is enabled, then much of the optimisation is lost as it is necessary to
search level by level. However using an entry selection filter without Also apply filter
to parent entries will work efficiently with this optimisation; it is possible to fetch an
entire subtree with an entry selection filter using a single LDAP paged search.

The page-size specification below Optimised data pre-fetch allows page-sizes to be
tuned. The first number is the page-size used when requesting just DNs from the remote
directory, and the second is the page-size used when requesting whole entries from the
remote directory. Larger numbers may make things slightly faster, but only if the remote
directory supports those larger page-sizes.

• The Entries page allows you to control which entries are synchronized. An arbitrary
LDAP filter may be used to select the entries to include. LDAP filters may be used with
all source types, even CSV, SQL or LDIF files.

The LDAP filter may be applied in two ways, either globally, like an LDAP search,
where child entries are included whether or not the parent matches (which may result in
gaps in the hierarchy), or top-down where the filter must match all parents as well as
the target child entry for that child to be included in the sync. For example, if you want
to include all person entries, but they are found in a subtree reached via OU entries,
then with Also apply filter to parent entries selected, you would need a filter of
“(|(objectclass=organizationalUnit)(objectclass=person))”, not simply
“(objectclass=person)”. If Also apply filter to parent entries is not selected,
“(objectclass=person)” would work, but all the OU entries would be missing and would
have to be replaced with glue (see the Glue tab) for the sync to be successful.

A maximum depth to sync in the subtree may be specified, and “chop-points” may be
placed at particular DNs to exclude whole subtrees, chopping either before or after the
configured DN.

• The Attributes page allows you to control which attributes are synchronized. The filtering
rules are selected by objectclass using the same keyclass scoring rules as are used for
Sodium templates. For any given keyclass, a list of attributes and objectclasses may be
included or excluded. For any given entry, the rule with the highest priority whose
keyclass matches the entry’s objectclasses will be used. The default is to pass through
all attributes.

For example, we may wish to exclude the userPassword attribute from the
synchronization when copying person entries. To do this:

1. Click Add a rule

2. Click Change next to the objectclass

3. Enter person, then click OK.

4. Click Change next to Allow all attributes and select Delete these attributes.

5. Click Change next to (none).

6. Select userPassword, then click OK.

By default both entry and attribute filtering are applied only to the source subtree before
comparison to the (unfiltered) target subtree. This is good when you want the target to
be a precise copy of the filtered version of the source subtree. However, by using filters
on the target subtree as well, you can choose which entries (or even attributes) in the
target subtree are affected by the sync, therefore allowing merging or selective copying

Synchronising Directories (using Sodium Sync)

167M-Vault Administration Guide

of data. In this case the entry and/or attribute filters should be applied to both source and
target subtrees. For example you could have two syncs with the same target subtree, one
filtering on “(mail=*company1.com)”, and the other on “(mail=*company2.com)”, and
one sync would leave untouched the entries belonging to the other. Merges like this
require some care in setting up. See Section 12.4, “Setting up a merge-sync” for details
on setting up an attribute-based merge.

• The Mapping page allows selection of various preset mapping rule-sets. These are
defined in the mapping-rulesets.xml file shipped with Sodium, and may be reconfigured
if necessary (see Section 12.11.1, “Configuring mapping rule-sets”).

• The Glue page can be used to handle the situation where the mapping or filtering has
left a child without parents. This may happen especially as a result of the force-conformity
options on the Mapping page (which may be implied by other rule-sets as well) when
the source DSA contains parent entries with completely unknown schema.

• Add glue entries for missing parents creates synthesized entries, which have an
objectclass of untypedObject and appear in Sodium’s main window as Container
entries, in the place of the missing parents.

• Reparent orphan entries to nearest ancestor reparents the stranded children up to
the nearest known ancestor. This can be used to intentionally flatten trees.

• The Checks page allows checks to be configured as part of the sync (see Section 12.6,
“Checking syncs”).

• The Trace page contains options that may aid in debugging problem configurations.

• Generate a debugging trace to the file: saves a trace of the entire sync operation to
the specified file. With all the options enabled, detailed information on the processing
of entries through all the parts of the flow-graph is saved

• For output over DAP or LDAP, save all failed changes to an LDIF file: saves
failed changes with comments that show the resulting error to the specified file.

• Archive and date-stamp old trace and failed-changes files enables you to keep of
files instead of overwriting them.

12.3.1 Limits

• Sodium Sync uses a streaming model, so there are no limits on the total size of the subtree
which may be synchronized.

• If the Directory supports paged results, then the fan-out at any level of the tree is limited
only by available memory (required to sort the list of DNs). If the Directory does not
support paged results, then the fan-out is limited by the administrative size limit
configured in the DSA. Sodium Sync will warn if an administrative limit has been hit.

• The size of the entries that can be synchronized is limited only by available memory.

• For Optimised data pre-fetch, there must be enough disk space to store the temporary
copy of the source sub-tree.

12.4 Setting up a merge-sync

A merge-sync is one in which individual attributes are synchronized between directories
rather than whole entries. This is a special case which requires some care to set up, and so
is described below.

As an example, you may have two source directories on different systems, each a ‘master’
for different attributes. One will be used to synchronize the entries and the bulk of their
attributes to the target, and then the other will be used as a merge-sync to fill in just a few

Synchronising Directories (using Sodium Sync)

168M-Vault Administration Guide

additional attributes. The merge-sync relies on the entries already being present on the
target server from the first sync.

The first sync is configured as a standard basic sync, with the following addition:

• On the Attribute tab, a filter is set up that excludes the ‘merge’ attributes that will come
from the second Directory. This needs to be set to apply to both source and target. This
filter stops the first sync from trying to delete the attributes merged in by the second
sync.

The second sync (the merge-sync) is configured as follows:

• On the Entries tab, the entry filter uses an LDAP search to match just those entries
which have attributes that need synchronizing. This usually means leaving Also apply
filter to parent entries unselected.

• On the Attribute tab, the attribute filter is set up to include only the naming attribute
(e.g. cn), objectclass, and the ‘merge’ attributes that need merging in.

• Both entry and attribute filters are set to apply to both source and target.

• On the Output tab, the Safeguard merge-sync: block entry additions or deletions is
selected.

The result of the filters on the merge-sync is that the comparison processing node only sees
the differences between the specified ‘merge’ attributes on the source and target, and so
only generates changes which correct those particular values on the target. The result is
that only the ‘merge’ attributes are synchronized from source to target.

However, this works only when the entries exist on both source and target. If they are out
of sync due to a delay between setting up a new entry on one master compared to the other,
then the merge-sync might think that it should try to add or delete an entry. This is not
what is desired, so the Safeguard merge-sync option is used to block add-entry and
delete-entry operations, generating a warning instead. This makes a merge-sync safe even
when there may be temporary discrepancies between the master servers.

With the syncs configured as described, both can be scheduled to run regularly, and the
target will be maintained as a stable merge of the configured data from the two source
directories.

12.5 Synchronizing to Active Directory

Active Directory (AD) can be a challenging sync target for a number of reasons and various
techniques may be used in Sodium Sync to handle the problems that come up. This section
documents the problems and work-arounds available when synchronizing from a typical
LDAP or X.500 Directory to AD.

The following issues need to be considered:

• The source data has to be manipulated either to strip out attributes that AD will not
accept or to convert their values to attribute types that AD will accept. The conversions
required depend on the source data to be synchronized, and may be handled with entry
and attribute filters. For complex translations, the conversion may require a custom
ruleset to be created in the mapping rulesets file (see Section 12.11.1, “Configuring
mapping rule-sets”).

• AD adds a number of internal attributes to entries, but does not treat them as operational
attributes. For this reason, the Sync must be manually configured to filter these

Synchronising Directories (using Sodium Sync)

169M-Vault Administration Guide

pseudo-operational attributes out of the incoming data. To do this, on the Attributes
page:

1. Click Change alongside Apply filters to source, before processing and change it
to Apply filters to source and target, before processing.

2. Click Use base AD list (the final option on the page).

It may be necessary to add attributes to this base list if AD sends back additional
pseudo-operational attributes.

• AD adds automatic objectclasses in some cases, for example adding user to
inetOrgPerson entries. The sync would normally see this as a difference that needs
correcting, so it is necessary to also filter out these special objectclasses to avoid problems.
This is achieved by adding a specific rule to the Attributes page, for example: “Match
on objectclass person; Allow all attributes; Delete these objectclasses: user.”

• AD uses an old pre-LDAP representation of O/R addresses, referred to as F.401. This
may be converted using to_syntax="ad_oraddr"’ and
‘from_syntax="ad_oraddr" in the mapping rules. AD insists that all DN values
refer to an existing entry. This causes severe problems for loading up a set of entries that
have DN references within the set. Any forward references cause the entry addition to
be rejected. This could be solved with a two-pass ‘apply’ (writing entries on the first
pass, and DN values on the second), but this has not yet been implemented. For now,
DN references to entries existing outside of the synchronized set of entries are fine, but
anything else may give problems.

• Password synchronization to AD requires use of a special operation on AD that is not
currently supported.

12.6 Checking syncs

Various checks may be configured as part of a sync. The checks may be used simply to
give warnings, or may be used to stop the sync from applying changes until all the checks
have passed. It is possible to run a sync simply for the checks and make it throw away its
results, either by running a Source Only sync (set on the Mode page), or by selecting
Discard changes on the Output page.

Most of the checks are configured on the Checks page:

Synchronising Directories (using Sodium Sync)

170M-Vault Administration Guide

Figure 12.3. Configuring checks

The following checks are available:

• DN referential integrity: checks that all DNs point to entries that actually exist within
the set of data being synchronized. It is also possible to check DNs that point outside
the subtree if required.

• Check size of update: If used with the “Abort if checks fail” setting, then all changes
will be held until it is certain that the size of the update does not exceed the specified
percentage. This can be used to protect downstream servers from accidental or
catastrophic large-scale changes on upstream servers.

• Duplicates check: This checks for duplicate values across the whole of the data set
being synchronized. This can be important for some systems, like Exchange, which do
not tolerate duplicate values in certain attributes. Duplicate values can cause a check
failure, or alternatively can be dropped from the sync with a warning.

• Mapping rule based checks: Checks may be configured in the mapping rulesets. These
are typically regex-based checks on attribute values, or checks on the numbers of attribute
values. However, using scripting it is possible to do much more complex forms of
checking, for example entry-wide or even sync-wide checks. See Section 12.11.1,
“Configuring mapping rule-sets” for more details.

12.7 Sync groups and replication workflow

Using Sync Groups, a number of syncs may be grouped together into a sequence. When
the group of syncs runs, the syncs within it are executed in sequence until a ‘stop’ condition
is reached. The group can be configured to stop on error, or failure, or not to stop at all.

Sync Groups enable setting up a Replication Workflow. A typical replication workflow
might consist of several syncs which copy in data from various different sources onto a
staging server, followed by a number of checking syncs to verify that all the data on the
staging server is sound (e.g. DN referential integrity, valid data values, no duplicates, and

Synchronising Directories (using Sodium Sync)

171M-Vault Administration Guide

so on). The final sync in the sequence copies the data from the staging server onto the
downstream server and makes it ‘live’. This final sync will only be run once all the previous
syncs and checks have passed, so this ensures that the live downstream server always shows
valid, fully checked data.

To create a group of syncs:

1. Click New... in the Sync Profile Managment window.

2. Select Group of Syncs and click OK.

Figure 12.4.The Sync Profile Editor

The Scheduling page configures scheduling for the whole group. Individual members
cannot be scheduled independently.

Syncs may be added to the group using drag and drop, or by clicking New... with the group
profile selected in the Sync Profile Management window.

12.8 Correlated syncs

A correlated sync is designed for cases where there is no simple DN-based correspondence
between the entries in two directories or databases. In general the DN of the corresponding
entry on one database cannot be algorithmically derived from the DN on the other, and
must be searched for by examining data within the records or entries on both sides.

Correlation in Sodium Sync is based on extracting key values from both source and target
databases, and then comparing those key values and matching them up into pairs, forming
a list of correlated pairs and a list of “rogues” (unmatched entries). Key value matches may
be an exact match, which is preferable, but could also be an inexact match based on the
smallest edit distance (a modified Levenshtein Distance).

Example 12.1. Example 1

An LDAP Directory contains user details and login names, organized by DN. An SQL
Directory contains user addresses, contact details and social security numbers, indexed by
payroll number. The correlation key could be formed from the user’s name, normalized to

Synchronising Directories (using Sodium Sync)

172M-Vault Administration Guide

the form “<surname>, <firstname> <initials>” and lowercased. Where there are missing
initials or typing errors, inexact matching would help match things up.

Key value generation is scripted, which means that the values can be normalized or flattened
to improve matching between two databases maintained to different conventions.

Example 12.2. Example 2

The same department may be known by different codes in different parts of an organization,
and in this case the values would have to be mapped to one single set of codes for the
purpose of matching. Let’s say that we are correlating with a key formatted as
“<department> <surname> <firstname>” and lowercased. Fred Bloggs works in Acme
Technical Support. This department is referred to as “SUPP” on the payroll SQL database,
but as “ATS” in the login LDAP database. We choose to convert the SQL code “SUPP”
to the LDAP code “ATS” whilst forming the correlation key from the SQL database, so
this means that the final correlation key value would be “ats bloggs fred” on both sides,
allowing the records to be matched up successfully.

A correlated sync proceeds through a number of phases:

• The correlation profile is written and undergoes testing. Once the profile is working, no
further changes to it should be required, except perhaps for tweaking the key generation
to improve the numbers of exact matches in a complex correlation scenario. See
Section 12.11.4, “Correlation profile” for details on creating a correlation profile.

• The correlation pass runs. This generates keys from the two databases, then indexes
them and extracts exact matches, then inexact matches, then rogues. If there are
correlations that have previously been approved, then these are taken into account, and
they are checked to see that they are still valid.

• The administrator enters the approval GUI (by clicking View Report) and checks the
correlations that have been generated. If correlations have previously been approved,
then the administrator would only need to attend to the things that have changed. The
correlation and approval phases might be run weekly to daily, depending on how quickly
newly-added entries should propagate through the system.

Normally, exact correlations will be approved in bulk, inexact correlations will be checked
by eye for errors before approval, and rogues may be set to be ignored or may be matched
up by hand. Typically, the aim is for all matches to be exact matches. To achieve this
may require adjustments to the key generation and normalization in the script code (first
step), or changes to be submitted to the upstream database maintainers if the data held
in them is incorrect.

• The correlated sync now runs, using the approved list of correlations as a basis. Attributes
are synchronized between the correlated entries. This might be run daily, hourly, or
perhaps more often, depending on how quickly data within entries should propagate
through the system.

12.8.1 A simple worked example

We have an LDAP Directory containing information on toaster spare parts. We have a
CSV file containing a dump from the warehouse database system containing information
on the bin numbers for these parts. We wish to load the new bin numbers into the main
LDAP spare part Directory. The CSV file and the LDAP Directory both contain the toaster
part numbers, so we can use the part number as the key for correlation.

The warehouse system is indexed by inventory number. Here is small part of the CSV
dump:

INUM,BIN,PART,DESC
000178432,CP-43-D,483-4732,PT-2000 baseplt hold clip
000178433,CK-82-A,744-2583,PT-2000 depr knob orange

Synchronising Directories (using Sodium Sync)

173M-Vault Administration Guide

Here are the equivalent entries in the LDAP Directory, cut-down:

dn: cn=483-4132,cn=PT-2000,ou=TOAST,ou=KWG,o=ACME
objectclass: part
objectclass: top
cn: 483-4132
description: Acme Premium Toaster baseplate holding clip
...

dn: cn=744-2583,cn=PT-2000,ou=TOAST,ou=KWG,o=ACME
objectclass: part
objectclass: top
cn: 744-2583
description: Acme Premium Toaster depression knob orange
...

From the CSV file a correlation key is generated for each record:

000178432: 483-4732
000178433: 744-2583

From the LDAP Directory, a correlation key is generated for each entry:

cn=483-4132,cn=PT-2000,ou=TOAST,ou=KWG,o=ACME: 483-4132
cn=744-2583,cn=PT-2000,ou=TOAST,ou=KWG,o=ACME: 744-2583

Now we run the correlation to try to match things up. The exact match pass runs through
and finds the following correlation:

000178433 = cn=744-2583,cn=PT-2000,ou=TOAST,ou=KWG,o=ACME

It continues onto the inexact match pass which finds the following correlation:

000178432 = cn=483-4132,cn=PT-2000,ou=TOAST,ou=KWG,o=ACME

It appears that there was a data entry error with the part number on one of the systems,
which is why one of them came up as an inexact match. We go to the correlation approval
GUI, and check and approve both the exact and inexact correlations. This list of mappings
is now saved.

When the correlation sync runs, it will go through the approved correlations in pairs, looking
up the record in the CSV file using the inventory number (e.g. 000178432), and the entry
in the LDAP Directory using the DN (e.g. cn=483-4132,cn=PT-2000...). The loaded data
goes through normal sync mapping, filtering and difference-comparison to synchronize
the bin number across from the CSV record into the LDAP Directory as intended.

Now that we have established a correlation between inventory number and LDAP DN for
those spare parts, we don’t need to correlate them again. Next time we get a CSV dump to
synchronize, the correlation will only need to check to see if parts have been deleted on
either side, and correlate any new parts that have been added since the last correlation.

12.8.2 Setting up a correlated sync

Once the correlation profile has been created (see Section 12.11.4, “Correlation profile”),
a sync profile may be created, using the Advanced View.

1. On the Mode page, select Correlated.

Synchronising Directories (using Sodium Sync)

174M-Vault Administration Guide

2. On the Correlation page:

a. Select the correlation Profile that you have already defined.

b. In Parameter, find the file containing the correlations (or type the name of the file
that will contain them)

The correlations are written in a text form, so .txt would be a suitable extension.

3. Still on the Correlation page, the next two fields enable you to fine-tune the processing
of inexact correlations.

• Setting a limit on the number of inexact entries to process lets you control runaway
correlations.

The time to run the inexact correlations requires O(N.M) time (i.e. twice as many on
each side takes four times as long to process)

• Inexact matches work on the basis of finding the pairs with the smallest edit distance
between their keys. The Inexact maximum distance field lets you control the maximum
difference (expressed as a count of character insertions and deletions) that should be
considered for an inexact match.

4. Source and Target pages are completed as normal.

5. On the Attributes page:

Note: Since normally a correlated sync is used to merge a few attributes from
the source into the target, this needs to be set up as a merge sync.

• Change the attribute selection filters to Apply filters to source and target, after
processing.

• Add a rule corresponding to the objectclass you want to sync. Change Allow all
attributes to Allow only these attributes, and set it to pass through just the attributes
that you wish to merge.

6. You may also need to filter out entries that you don’t want to see, either using another
rule on the Attributes page, or by using a filter on the Entry tab.

7. On the Output page, select Safeguard merge-sync.

8. Check the other pages for settings that may be required.

The sync should now be ready to run.

Note: On the Scheduling page you will see two sets of parameters because
the correlation pass is scheduled independently from the sync pass.

9. Return to the Sync Management Profile window.

A Correlate button now appears alongside the Run Sync button. Click it to run the
first correlation.

12.9 Approving correlations

After running a correlation pass, a green star is displayed alongside the profile name. Click
View Report to enter the correlation report editor.

Synchronising Directories (using Sodium Sync)

175M-Vault Administration Guide

Figure 12.5. Correlation report editor: linked mode

This editor works in two modes: Linked (above) and Unlinked (below):

Figure 12.6. Correlation report editor: unlinked mode

The linked mode shows source and target DNs bound together, whereas the unlinked mode
allows source and target DNs to be selected independently. The unlinked view has
independent Discard, Approve and Ignore buttons for source and target, and a Match +
Approve button which is used for manually matching up entries from the two sides.

In general, it is possible to do Discard, Approve and Ignore operations either on single
items or on items in bulk. To operate in bulk, then a category or group item in the display
should be selected instead of one of the individual items before clicking on the button for
the required operation.

The normal workflow in this editor is to start from the top and work downwards:

• Existing approved correlations and Existing ignored correlations do not normally
need to be reviewed, but if necessary you can navigate into these and Discard individual
items, which sends the DNs into the Rogues pending ignore category.

Synchronising Directories (using Sodium Sync)

176M-Vault Administration Guide

• If there are items in Broken approved correlations or Broken ignored entries, then
you need to see what the problem is. The choice is to Discard the correlation/ignore
item, which sends the DNs into the Rogues pending ignore category, or Approve the
item once again, which forces it to be included (although it will probably cause a failure
on the next Sync run).

• Exact correlations pending approval can normally be approved in bulk without review.
Select the category line, then press Approve and click OK.

• Inexact correlations pending approval will probably need reviewing. If you spot a
bad correlation, you can send the DN to the Rogues pending ignore section by clicking
Discard.

Alternatively you could switch to the Unlinked view and try and match it up manually
with another DN. Once all the problems have been identified and eliminated, you can
approve the rest in bulk by selecting the category line and clicking Approve.

• Rogues pending ignore will contain all the odd DNs found by the correlation pass,
and also any other odd DNs that have been moved there by clicking Discard in the
previous steps.

If you have moved a number of DNs here, it may be worth clicking Recorrelate Rogues
to see if there are any new exact or inexact matches to be found amongst the rogues.
This runs a mini correlation pass just for the rogue DNs. This is often helpful if entries
have been renamed on one of the sources.

For the rogue DNs that remain, your options are: to try and match them up by hand using
the Unlinked view and the Match + Approve button, or to mark them as entries to
ignore by clicking the Ignore button.

• New approved correlations and New ignored entries will contain all the correlations
that you have set to be approved and entries that you have set to be ignored in this session.
You can check through them and Discard any that are incorrect, if you wish.

Once you have reviewed and approved the correlations, click Apply to make the new
correlation list live.

To save your work to complete the process later, click Save. Re-enter the editor later using
the View Report button. If you want to discard all your changes, click Cancel.

As soon as they have been applied, the changes will be picked up by the next correlated
sync to run. A correlated sync is the same as a normal sync, except that it only works with
the pairs of entries that have previously been approved. Mapping and attribute filtering all
work just the same as for any other sync.

12.10 Configuring Sodium Sync Server

To run syncs automatically at regular scheduled intervals, you must start the Sync Server.
This is a background process that runs continuously, even over system reboots, and which
runs the scheduled syncs without needing to have the Sodium GUI application running.

When the Sync Server is not running, scheduled syncs are displayed in the Sync Profile
Management window with an error triangle to warn that the server is not running. When
the server is running, the status of the last sync and the time of the next sync are shown. If
a sync is in progress, then a progress indication is also displayed.

Synchronising Directories (using Sodium Sync)

177M-Vault Administration Guide

Figure 12.7. Sync Profile Management window showing scheduled syncs

You may enable or disable the scheduling of a sync by selecting or clearing the checkboxes.
A complete update for cached syncs may be forced using the Force Complete Update
option (from the right-click menu or from the menu displayed when you click Menu...).
The way that the Sync Server is managed depends on the operating system, but on both
Windows and UNIX the server status control that appears in the bottom-left corner of the
Sync Profile Management window is used to control it.

On Windows, the Sync Server currently runs as a Windows Service.

• “Home” editions of Windows 2000 and Windows XP are not supported as they do not
allow Services to run as a user.

• There may be only one Sync Server running on a given machine, and the user who
controls it and sets it up must be an administrative user.

• On Vista and Windows 7, you must start Sodium with Administrator privileges to
successfully install and start the Sync Server service from Sodium. To do this, right-click
on the shortcut to start Sodium and select Run as administrator.

Select Install and Start Server... from the server status control to install and start the
service as the currently logged-in user. A box is displayed asking for the user’s password
and the port number to use: the password may either be provided here or directly in the
Windows Services control panel (Control Panel → Administrative Tools → Services
→ Isode Sodium Sync then Properties → Log On), leaving the password field blank in
Sodium.

Note: Sodium does not need this password and does not store it permanently, but
if it is provided, Sodium passes it on to Windows Service Management as a
convenience to the user.

The first time the Sodium Sync service is installed, there may be a log-on failure when
starting it because the user has not been given the Logon as a Service right. This may
be solved by going to the Services control panel, and re-entering the password as described
above. After that point, it should start without problem, either from Sodium or from the
Windows Services control panel directly.

Once the Windows Service is installed, it may be started and stopped quickly using the
server status control. To remove the Windows Service, select either Stop and Uninstall
server or Uninstall server.

Synchronising Directories (using Sodium Sync)

178M-Vault Administration Guide

On UNIX, the Sync Server runs as a detached user background process, and is restarted
using cron. Due to this, each user may have their own Sync Server running, although they
would have to each select different port numbers in this case.

Start the Sync Server using Start Server from the server status control. Accepting the
defaults installs a user crontab entry, and starts the server. Stop the server using the Stop
Server selection. This removes the crontab entry to prevent the server from starting up
again in a few minutes time. The installed crontab entry can be checked with crontab
-l.

The Sync Server process runs detached from the terminal and the user may close Sodium
and log out without affecting it.

12.11 Configuration files

There are two files which contain configuration of profiles used by the Sync. These are
used for mapping rule-sets, correlation profiles, SQL profiles and CSV profiles.

They are searched for first in (ETCDIR)/sodium and then in (SHAREDIR)/sodium. If you
modify a file found under (SHAREDIR)/sodium, save it back under (ETCDIR)/sodium, or
otherwise your changes will be lost if you upgrade to a new version of Sodium. The two
files are mapping-rulesets.xml and config-profiles.xml, documented below.

12.11.1 Configuring mapping rule-sets

The mapping rule-sets may be configured by someone proficient in Perl-compatible regular
expressions and XML. The shipped mapping rule-sets are stored in
(SHAREDIR)/sodium/mapping-rulesets.xml.

12.11.1.1 Mapping rule-set file syntax reference

The top level element is <mapping> which contains an optional <script> tag followed
by a number of <ruleset> child elements.

The optional <script> tag is used if a JSR-223 scripting language (see http://java.sun.com/
javase/6/docs/technotes/guides/scripting/) is to be used within the mapping file. Note that
scripting requires Java 6 or later. This tag is used to define functions and initialise global
variables for use in script fragments later on. All of the script code within one mapping
file runs in the same global-variable context, independent from any other scripting in the
application. The tag has an optional lang parameter which specifies the scripting language
to use, defaulting to JavaScript (which is shipped with Java 6). The contents of the
<script> tag is the scripting code to run. You may use the XML construct <![CDATA[
...]]> to enclose the code, to avoid having to quote XML special characters. If the
<script> tag is omitted, then the default scripting language (JavaScript) is used for any
script fragments found later on.

The <ruleset> element has parameters name (a unique internal reference-name for the
ruleset) and label (the visible name of the rule-set to show on the Mapping page). This
contains a number of <rule> child elements.

The <rule> element has the parameter keyclass (optional, containing zero, one or more
space-separated key objectclasses to test on). Out of all the rules, the one that best matches
the target entry is used, with scoring rules the same as for the form templates. A rule with
no keyclasses will act as the default if nothing else matches. The rule contains a number
of action elements listed in the order that they should be executed. Action elements are:

Synchronising Directories (using Sodium Sync)

179M-Vault Administration Guide

http://java.sun.com/javase/6/docs/technotes/guides/scripting/
http://java.sun.com/javase/6/docs/technotes/guides/scripting/

<delete>, <copy>, <move>, <map>, <add>, <add_opt_oc>, <set_missing>,
<build_postal_address>, <conform>, <normalize>, <nop>, <check>, <script>.

The action element parameters follow a pattern and are as follows:

• attr selects the destination attribute type.

• value gives a value to write if that is required.

• from selects one or more attribute types which are the source of the data, as a
space-separated list.

• match includes a Java regex (similar to a Perl regex) which makes the operation
conditional on a match of the value to that regex.

• notmatch includes a Java regex which makes the operation conditional on the value
not matching that regex.

• s_match includes a script fragment that checks whether a value should be included in
the operation. The global ‘val’ in the scripting context is set to the string value to check,
and the return value of the script expression should be a boolean, with ‘true’ indicating
that the value should be included.

• subst includes a Perl-like substitution command, used to make modifications to the
values.

• s_subst includes a script fragment to convert a value. The global ‘val’ in the scripting
context is set to the string value to convert, and the return value should be a string of the
replacement value, or null to leave the same.

• rdn indicates that the value or values involved in this action should add to (rdn=“add”)
or replace (rdn=“set”) the current list of RDNs for the entry.

• check may be used to disable syntax checks when it is known that a value is in a foreign
syntax (i.e. incorrect according to the local schema) that needs to be handled unchecked.
The default is check="yes" which does the checks; check="no" may be used to disable
syntax checks.

• from_syntax and to_syntax may be used to convert to/from an external syntax when
values are passed through the action. The only supported syntax currently is "ad_oraddr"
for conversion to/from Active Directory format O/R addresses. If this is combined with
substitution (subst or s_subst) then substitution is performed after the from_syntax
conversion, and before the to_syntax conversion. If to_syntax is used, then the
default for check changes to check="no", although this may be overridden.

The regular expression handling is done with Java’s regex package, which is very similar
to Perl’s regex handling. For the syntax of <pattern>, see the Java documentation for
java.util.regex.Pattern: http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/ Pattern.html
[http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html]

For match and notmatch, case-insensitive matching can be turned on using (?i) in the
regex, and other flags may be similarly controlled (see the Java regex documentation). Just
as in Perl, ̂ and/or $ must be used if you want your match to be anchored to the start and/or
end of the value, otherwise the pattern matches anywhere within the string.

The substitution command for subst takes the form:

"s/<pattern>/<replacement>/<flags>"

The <replacement> text uses $1, $2, etc. to insert matched sub-sequences from the
<pattern>. The <flags> supported are zero or more of the set: i for case-insensitive, s
for single-line (Pattern.DOTALL), m for multi-line (Pattern.MULTILINE), and g for global

Synchronising Directories (using Sodium Sync)

180M-Vault Administration Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

(i.e. replace-all). Some character other than / may be used for the command separator, as
in Perl, but Perl’s brace-pair forms are not handled.

Note: In general it is permissible to create duplicate values for any given attribute
using the actions below, and those duplicates will always be reduced to a single
value.

The <delete> action has an attr parameter to select the attribute to delete. If a match,
notmatch or s_match parameter is specified, only values matching/not-matching are
deleted. For example, to delete all non-Acme email addresses:

<delete attr="mail" notmatch="acme\.com"/>

The <copy> action has attr and from parameters. Values from all the from attributes
are copied to the attr attribute. If “match”, “notmatch” or “s_match” is specified, then
only values matching/not-matching are copied.If “subst” or “s_subst” is specified, then
the values are modified with the given substitution whilst being copied. If “rdn” is specified,
then the copied values will replace or add to the RDN. For example, to add all the other
telephone numbers to those already present in one attribute (perhaps for the benefit of a
limited client):

<copy attr="telephoneNumber" from="mobile homePhone"/>

Or to copy the display name to the cn and make it the entry’s RDN:

<copy attr="cn" from="displayname" rdn="set"/>

The <move> action has attr and from parameters. Values from all the from attributes
are moved to the attr attribute (i.e. they are deleted from the source attributes). If match,
notmatch or s_match is specified, then only values matching/not-matching are moved.
If subst or s_subst is specified, then the values are modified with the given substitution.
If rdn is specified, then the moved values will replace or add to the RDN. For example,
to transfer a web-address from one schema to another:

<move attr="labeledURI" from="wWWHomePage"/>

The <map> action has attr and subst parameters. Values in attr are modified in place.
If match, notmatch or s_match is specified, then only values matching/not-matching
are modified. If rdn is specified, then the mapped values will replace or add to the RDN.
For example, to internationalize a UK phone number:

<map attr="telephoneNumber" match="^ *0[1-9]"
 subst="s/^ *0/+44 /"/>

The <add> action has attr and value parameters. A new attribute-value is added to the
existing values of the given attribute. If from and match/s_match (or notmatch) are also
supplied, then the action is only performed if one of the values in the from list matches
(or does not match in the case of notmatch), which makes the <add> action conditional.
If rdn is specified, then the new values will replace or add to the RDN. For example, to
add a particular organizational unit conditional on a match on the E-mail address:

<add attr="ou" value="Sales" from="mail"
 match="sales\.acme\.com"/>

Synchronising Directories (using Sodium Sync)

181M-Vault Administration Guide

The <add_opt_oc> action has a value parameter which specifies an objectclass name.
If the named objectclass is required according to the local schema, then it is added to the
entry along with any other objectclasses that it depends on. ‘Required’ means that there
are attributes handled by the named objectclass which are not currently handled by any
other objectclass.

The <set_missing> has attr and value parameters. If the attribute has no values, then
the given value is added. For example, to set the preferred language for anyone who has
not already set it:

<set_missing attr="preferredLanguage" value="English"/>

The <build_postal_address> action has attr and from parameters. The values of
the from attributes are used in order to build an address to put in the postal-address syntax
attribute attr (i.e. up to 6 lines of up to 30 characters, separated by “$”). For example:

<build_postal_address attr="postalAddress"
 from="street postOfficeBox l st postalcode c"/>

The <conform> action imposes conformance of the entry to the loaded schema. The
optional strip parameter if present should have a “true” or “false” value, and if true causes
all unknown objectclasses and all attributes not belonging to the objectclasses in the entry
to be stripped out of the entry. The optional insert parameter if present should have a
“true” or “false” value, and if true causes "unset" values to be inserted (if possible) for all
attributes required according to the schema for the objectclasses. This ensures that the entry
is valid to be sent to M-Vault, assuming that the Directory Server is running with the same
schema as Sodium. If, as a result of the strip operation, the distinguished value (for the
RDN) is deleted, then the entire entry is considered unviable and is skipped. For example:

<conform strip="true" insert="false"/>

The <normalize> action normalizes attribute values to the default printable representation
if there are different representations. By default all attributes in the entry are normalized
by this action. The optional attr parameter if present limits the operation to just the
specified attribute. This action converts some alternative syntax representations into the
preferred syntax, e.g. for OR address, which means that strings that represent the same
value but appear different in printable form do not cause the sync to generate unnecessary
changes. For example:

<normalize attr="objectclass"/>

The <nop> action does nothing (no-operation), but can be used with the rdn parameter
for its side-effects. With rdn="set" and no other parameters, it clears the RDN list. With
rdn="set" or rdn="add", an attr parameter, and optionally a match, notmatch or
s_match parameter, values from that attribute are used to replace or add-to the existing
RDN values. For example, to set the RDN to the single cn value which has a format of
"name.name" in lowercase:

<nop rdn="set" attr="cn" match="^[a-z]+\.[a-z]+$"/>

(For example, if there were two CNs: cn=Fred Smith and cn=fred.smith, this action would
match on only the second one and would make it the RDN of the entry; if more than one
cn matches, an error would result.)

The <check> action checks that values match or do not match the given regexes or
conditions. If a check fails, then this causes a check failure to be flagged, which may cause
either an abort or a warning according to the top-level checking mode. The attr parameter

Synchronising Directories (using Sodium Sync)

182M-Vault Administration Guide

gives the attribute to check. The optional match or s_match parameter gives a test that
the values must match to pass the check. The optional notmatch parameter gives a regex
that the values must not match to pass the check. The optional count parameter checks
the number of values present; the parameter is a list of comma-separated integers or ranges,
for example "1-" or "0,1" or "0-1" or "1-5" etc. Remember to use ^ and $ anchors in
regexes if you want to check the whole value. For example, to check for valid phone
numbers and for at least one certificate:

<check attr="telephonenumber" match="^[0-9]*$"/>
<check attr="usercertificate" count="1-"/>

The <script> tag encloses some scripting code which can do arbitrary checks and
modifications on the data in the entry. The optional checks parameter should be set to
“true” if the script may call entry.fail(), e.g. due to doing validity checks. The optional
rename parameter should be set to “true” if the script does any modification of RDNs
or DNs. If either of these flags is unset when it should have been set, then attempting a
fail() or rename() operation will result in a fatal abort of the sync.

Within the scripting context, the global variable entry is set to a SiEntry value which
represents the entry to modify. See Section 12.11.6, “Scripting interface to Directory entries”
for details of the SiEntry interface. Note that JavaScript allows providing interface
callbacks with a simple inline function definition, for example:

<script checks="true"><![CDATA[
 entry.foreach("phone fax", function(attr, enc, val) {
 if (enc || !/^[0-9]*$/.test(val)) {
 entry.fail("Invalid " + attr + " value: " + val);
 }
 });
]]></script>

12.11.1.2 Annotated example of mapping rule-sets

This example mapping-rulesets.xml file illustrates a set of mapping rules designed to handle
conversion of attributes from Active Directory to Isode M-Vault. Active Directory uses its
own custom schema, and our task is to convert just those attributes that are of interest, and
to leave the rest. This example considers only person entries. Similar rules could be set
up for other types of entry.

The particular attributes we handle in this example are:

• The proxyaddresses attribute which is created by Exchange, which may contain E-mail
addresses, O/R addresses and various other types, according to a prefix on the value.
We must split these different types into different attributes, removing the prefix.

• The wWWHomePage attribute, which may contain a web-page link.

• Various ‘other-’ attributes which are used in Active Directory to store a second phone
number, pager number, fax number, etc, which we add to the set of values for the base
attribute.

• The postalAddress attribute, which has to be filled in from a number of other individual
Active Directory attributes.

• The street attribute, which on Active Directory may contain newlines which can cause
problems in other environments and must be translated. The objectClass attribute, which
has to be manipulated to include the correct structural and auxiliary objectclasses for
the attributes we wish to pass through.

Here is the file:

Synchronising Directories (using Sodium Sync)

183M-Vault Administration Guide

<mapping>
 <ruleset name="ad-mappings"
 label="Active Directory to M-Vault standard mappings">

Define a ruleset internally known as “ad-mappings” with the given label which will appear
on the Mapping page in the Sync Profile Editor with that label for users to turn on or off.

 <rule keyclass="person">

Specify a rule that applies when the person objectclass is present, so long as there is not
a more specific objectclass match later on.

 <add attr="objectclass" value="inetOrgPerson"/>

Always add the inetOrgPerson objectclass (and all superclasses), enabling use of various
extra attributes that we may need. If there is already that objectclass present, no change is
made (duplicates are always deleted).

 <move attr="mail" from="proxyaddresses"
 match="(?i)^smtp:" subst="s/^smtp://i"/>
 <move attr="mhsORAddresses" from="proxyaddresses"
 match="(?i)^x[45]00:" from_syntax="ad_oraddr"/>

Move addresses from an Active Directory-specific proxyaddresses attribute into standard
mail and mhsORAddresses attributes. The operations use match to move only certain
matching values. For example the first move only operates on values that start with smtp:,
matched case-insensitively: (?i) means case-insensitive, ^ matches the start of the string,
and smtp: matches itself. It is also necessary to remove the smtp: prefix as the values
are transferred, so this is done with a Perl-style subst command: in this example s/ means
substitute, ̂ smtp: matches the initial string, / introduces the replacement string (an empty
string), and /i ends the command, specifying a case-insensitive match.

The second example is much the same, except that x[45]00 specifies either the string
“x400” or “x500”, and the syntax is converted from AD format to LDAP format using a
built-in rule instead of a substitution. For example, “smtp:xxx@yyy.com” will match the
first rule, and get stored as a mail attribute with value “xxx@yyy.com”; however,
“x400:c=us;o=acme;cn=joe” will match the second rule and get stored as an
mhsORAddresses attribute with a value of “/cn=joe/o=acme/c=us/”.

 <add attr="objectclass" value="mhsUser"
 from="mhsORAddresses" match="."/>

This is an example of a conditional <add> operator. The mhsUser objectclass is added
only if there is a value for the mhsORAddresses attribute present. The match is for “.”
which means “any character”. <add_opt_oc> could also be used here.

 <move from="wWWHomePage" attr="labeledURI"
 match="^http://"/>
 <move from="wWWHomePage" attr="labeledURI"
 match="^https://"/>
 <move from="wWWHomePage" attr="labeledURI"
 subst="s|^(.+)|http://$1|"/>

Here we move values from wWWHomePage to the standard labeledURI attribute. Ones
which already have the “http:” or “https:” prefix are passed unchanged, and the others have
“http:” prefixed: s| means substitute, using | as the delimiter for the command, ̂ matches
the start of the string, (.+) matches one or more characters and remembers them, |

Synchronising Directories (using Sodium Sync)

184M-Vault Administration Guide

introduces the replacement string, “http://” is inserted directly, $1 inserts the string
remembered previously, and | completes the command.

 <move from="othertelephone" attr="telephonenumber"/>
 <move from="otherhomephone" attr="homephone"/>
 <move from="othermobile" attr="mobile"/>
 <move from="otherpager" attr="pager"/>
 <move from="otherfacsimiletelephonenumber"
 attr="facsimiletelephonenumber"/>

Here values are moved from Active Directory other- attributes to similar standard base
ones.

 <build_postal_address attr="postalAddress"
 from="street postOfficeBox l st postalcode c"/>

Here the special postalAddress attribute is filled from a set of other attributes.

 <map attr="street" subst="s/ *\r?\n */, /gs"/>

This handles newline characters in the street address. Active Directory permits newlines
in this attribute, but this is not always well-supported elsewhere. This mapping operation
replaces each newline and its surrounding white space with comma-space: s/ means
substitute, * (a space followed by an asterisk) matches 0 or more spaces, \r? optionally
matches a carriage-return, \n matches a linefeed, * (a space followed by an asterisk)
matches 0 or more spaces, / introduces the replacement text, , (comma-space) is the
replacement text, and /gs terminates the command, giving flags g for global (i.e. replace-all)
and s (treat as a single line, i.e. allow matching on newline characters).

 <conform strip="true" insert="true"/>

Now all substitutions and mapping have been done, strip out unknown objectclasses and
any attributes not belonging to the remaining objectclasses, according to the local schema.

 </rule>
 <rule>
 <conform strip="true" insert="true"/>
 </rule>

Also create a fall-back rule to be used for non-person entries, which just strips the entry
back to what is understood by the local schema. Note that if none of the objectclasses are
known to the local schema, the attribute holding the DN value may be deleted, in which
case the entry is dropped from the sync due to being unviable in the local schema.

 </ruleset>
</mapping>

Close the ruleset and the top-level mapping element.

12.11.2 Using CSV files as input or output

There is no GUI for configuring CSV file formats, and this must be done by setting up an
XML profile in the (ETCDIR)/sodium/config-profiles.xml file. There is an example file in
(SHAREDIR)/sodium. Each mapping of CSV columns to attribute names must be given
its own profile. A CSV profile must also include scripting to generate a DN on import, and
optionally to convert values on export or import, if necessary.

Synchronising Directories (using Sodium Sync)

185M-Vault Administration Guide

<csvprofile label="Personal Info">
 <format header="true" charset="utf-8"/>
 <columns> cn, sn, givenName, telephoneNumber,
 homePhone, uid, mail </columns>
 <header_check> CN, SN, GIVEN, PHONE,
 HOMEPHONE, UID, MAIL </header_check>
 <script lang="JavaScript">
 <export name="mapin" call="mapin()"/>
 <export name="mapout" call="mapout()"/>
 <![CDATA[
 function mapin() {
 var cn_value = entry.getValue("cn");
 entry.setDNArr(["cn", cn_value]);
 entry.setOC("inetorgperson");
 }
 function mapout() {}
]]>
 </script>
</csvprofile>

The above example demonstrates the format of a simple CSV profile. This profile descibes
a CSV file that has a header line and is stored as UTF-8 characters on disk. The columns
are associated with the attribute names as listed in <columns>. A sanity check is made on
import that the CSV file has the expected header field names, as listed in <header_check>.
The script tag sets up mapping which in this case fills in the DN and objectclasses after
the attributes have been imported.

Here is an example CSV file for the above profile containing two entries (the lines have
been wrapped to fit):

CN,SN,GIVEN,PHONE,HOMEPHONE,UID,MAIL
Fred Bloggs,Bloggs,Fred,01234 567 890,07987 654 321,
 f.bloggs,f.bloggs@acme.com
John Smith,Smith,John,01432 543 654,01531 642 753,
 j.smith,j.smith@acme.com

Here is the entry data that will be output from the script:

dn: cn=Fred Bloggs
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: Fred Bloggs
sn: Bloggs
givenName: Fred
telephoneNumber: 01234 567 890
homePhone: 07987 654 321
uid: f.bloggs
mail: f.bloggs@acme.com

dn: cn=John Smith
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: John Smith
sn: Smith
givenName: John
telephoneNumber: 01432 543 654
homePhone: 01531 642 753

Synchronising Directories (using Sodium Sync)

186M-Vault Administration Guide

uid: j.smith
mail: j.smith@acme.com

12.11.2.1 CSV profile syntax reference

The <csvprofile> tag has a label parameter which gives the name that will appear in
the configuration GUI. It contains an optional <format> tag, a <columns> tag, an optional
<header_check> tag, and a <script> tag.

The <format> tag has optional parameter header which specifies whether the CSV files
have a header line. It is not possible in general to detect whether the first line of a CSV file
is a header line or not, so this must be specified in the profile. The header parameter’s
value must be “true” or “false”. The default is “false” if unspecified. The <format> tag
has an optional parameter charset which specifies the character set used by the CSV file.
Example values include “us-ascii”, “utf-8”, “iso-8859-1”, “windows-1252” and
“MacRoman”. If unspecified, then the Java default character set is used, which will usually
be one that is typical for the OS environment.

The <columns> tag contains a list of attribute types which correspond to the columns in
the CSV file. The attributes type names should appear as a space- or comma-separated list.
On reading, the columns are read into attributes with these names. On writing, values in
these attributes will be written into the CSV columns. Multiple values give a warning, and
missing values are written as an empty string. If a header line is enabled, then the attribute
names are used in the header, unless <header_check> is also specified.

The <header_check> tag can be used to make sure that the headers on an incoming CSV
file exactly match the specified list of names. This may be useful to make sure that the
correct CSV file has been provided, and that nothing has changed in the upstream database.
The names should appear as a space- or comma-separated list, and they are compared
case-insensitively. If <header_check> is included, then these names are used on the
header line when the CSV is written, instead of the attribute names.

The <script> tag (see Section 12.11.5, “Script tag with exports”) must export two calls:
mapin and mapout:

• mapin is called when reading an entry from the CSV file. It should extract a DN from
the values that have been loaded, and set that DN on the entry. It may also change the
objectclasses and do any other required mapping or fixup of incoming values. The global
variable entry is an SiEntry (see Section 12.11.6, “Scripting interface to Directory
entries”) which initially contains the values read from the CSV row in the attributes
specified in <columns>, plus untypedobject and extensibleobject objectclasses and
a fallback DN. Note that the base-DN of a scan is the root DN, so the DNs of entries
read from a CSV file should normally have the root as their parent, or be in a hierarchy
starting at the root.

• mapout is called when writing an entry to the CSV file. There is no specific action
required on writing, but the script may map or transform values ready for writing if
necessary. The global variable entry is a SiEntry containing the data which will be
output.

12.11.3 Using an SQL database as source or target

For maximum flexibility, the interface between Sodium Sync and SQL databases relies on
glue code written in a scripting language. This allows the interface to be adapted to any
database interface which has Java bindings. The example code works with JDBC (which
gives access to all the major SQL databases), but the script could equally well interface
with any other database classes.

The supplied demonstration code interfaces with SQLite over JDBC. SQLite is shipped
with Sodium, so testing with this demo profile does not require any other packages to be
installed. The glue code for other SQL databases is likely to be very similar to this code.

Synchronising Directories (using Sodium Sync)

187M-Vault Administration Guide

To interface with another JDBC-supported database, you will need the JDBC driver for
that database as a JAR file, the JDBC driver class-name and the driver URL prefix. This
JAR file should be installed somewhere where Java will find it. This may be the lib/ext
folder within the JRE installation directory, or else the common Java extension folder
which is %SystemRoot%\Sun\Java\lib\ext on Windows and /usr/java/packages/lib/ext on
Linux. The class-name of the driver should appear in the jdbc parameter of the <script>
tag, and the driver URL prefix should then be used in the JDBC getConnection() call
in the connect() function.

SQL profiles are stored in the sodium/config-profiles.xml file, which is found within
(ETCDIR) or (SHAREDIR). See the example file provided under (SHAREDIR). Here is
the outer form of a SQL profile:

<sqlprofile label="Example SQL profile">
 <script lang="JavaScript" jdbc="org.sqlite.JDBC">
 <export name="connect" call="connect()"/>

...other exports...
 <![CDATA[

...script code...
]]>
 </script>
</sqlprofile>

For the <script> tag specification, see Section 12.11.5, “Script tag with exports”. The
label parameter on the <sqlprofile> tag gives the name which will be presented in
the configuration GUI for the user to select.

Not all of the possible exports need to be implemented and exported. For example, if you
do not want to support a “delete everything” operation, then do not export remove_all,
and if a sync is run which tries to do that operation, it will simply report an error and fail
the sync.

Note: To write the glue code, you must select some key or keys from the SQL
database that can be translated to/from a DN. It should be possible to uniquely
identify and access a SQL record using this DN as a key. DNs should be assigned
based on the root DN as parent, i.e. with all the entries placed immediately under
root, or in a hierarchy starting at root.

Entries are manipulated via a global variable entry which points to a SiEntry instance
initialised for the call (see Section 12.11.6, “Scripting interface to Directory entries”). SQL
fields should be mapped to entry attributes, and it is usually convenient to add objectclasses
so that the entry can be processed like any other Directory entry. The glue code must take
care of this mapping in both directions.

Here are the exports making up the SQL interface:

connect
This routine should set up the connection to the SQL database.

connect_write
If this routine is provided, then it will be used instead of ‘connect’ when a read-write
connection is required to the SQL database. If it is not provided, then ‘connect’ will
be used in both read-only and read-write cases. This allows a low-privileged or
anonymous connection to be made for ‘connect’, using a higher-privileged connection
only when necessary.

close
This routine should close the connection to the SQL database.

search
This routine should start a DN-ordered search of the whole dataset that this profile is
designed to access.

Synchronising Directories (using Sodium Sync)

188M-Vault Administration Guide

next
Get the next DN from the search. The global variable ‘entry’ is a blank SiEntry whose
DN should be set. The routine should return ‘true’ if the DN has been set, or ‘false’ if
there are no more entries. The DN will be used as a key to fetch the record using ‘read’.

read
Read a single entry using its DN. The global variable ‘entry’ is a SiEntry which contains
the DN to read. The entry should be filled in with the data read from the SQL database.
The routine should return ‘true’ if the read was successful, else ‘false’.

remove
Delete a single record from the SQL database using its DN. The global variable ‘entry’
contains the DN of the record to delete. The routine should return ‘true’ if the delete
completed successfully, else ‘false’.

remove_all
Delete all the records in this dataset. This may be called if the SQL database is the
target of a ‘recreate’ or ‘cached’ sync. The routine should return ‘true’ if the delete
completed successfully, else ‘false’.

add
Add a single record to the SQL database. The global variable ‘entry’ contains the entry
to add. The routine should return ‘true’ if the record was added successfully, else
‘false’.

update
Apply a modification to a record in the SQL database. The global variable entry
contains the DN and the attributes to update. Attributes to change or update will have
a value, and all other attributes will be missing. Attributes to delete will have an
empty-string value. The driving code for this interface assumes that all attributes will
be single-valued. Warnings are given if that is not the case. This routine should return
‘true’ if the update completed successfully, else ‘false’.

As noted above, you may implement any subset of these calls:

• If you only need read access, then ‘connect’, ‘close’, ‘search’, ‘next’ and ‘read’ would
be sufficient.

• ‘remove_all’ is only necessary for recreate/cached syncs.

• ‘update’ is only necessary when incremental changes will be made to a SQL database.

12.11.4 Correlation profile

Correlation profiles are stored in the sodium/config-profiles.xml file, which is searched for
in (ETCDIR) and (SHAREDIR). Here is an example of a simple correlation profile:

<correlprofile label="File correlation" type="file">
 <script lang="JavaScript">
 <export name="get_source_key" call="getkey()"/>
 <export name="get_target_key" call="getkey()"/>
 <![CDATA[
 function getkey() {
 return entry.getValue("cn").toLowerCase();
 }
]]>
 </script>
</correlprofile>

This correlation is a file-based correlation, which means that the correlations are stored as
lists in normal files. It uses the same function getkey() for both source and target key
generation, which generates a key from the lower-cased CN.

The <correlprofile> tag has a label parameter which gives the name which is used
in the configuration GUI, and an optional type parameter which specifies where the

Synchronising Directories (using Sodium Sync)

189M-Vault Administration Guide

correlations are stored. At the moment, the only valid value for type is "file", although
in a future version, it may be possible to store correlations in the Directory. The
<correlprofile> tag contains a <script> tag which should provide two exports:
"get_source_key" and "get_target_key". See Section 12.11.5, “Script tag with
exports” for details of the format of the script tag.

The two calls are used to generate a correlation key value from an entry. One is used for
the ‘source’ Directory or database, and the other for the ‘target’. Two different
key-generation calls are provided because it may be necessary to do different normalization
or mapping, or even to generate the key out of different attributes, depending on whether
the entry comes from the source or target. However, in some cases the key generation will
be the same, in which case the same routine can be put in the call expression, as was done
in the example above.

Both of the exports pass in the entry via the entry global variable, as a SiEntry (see
Section 12.11.6, “Scripting interface to Directory entries”), and should return the key as a
string.

12.11.5 Script tag with exports

This tag acts as a module of JSR-223 scripting code (see http://java.sun.com/javase/6/docs/
technotes/guides/scripting/), and allows exports from that scripting code to be defined. The
exports are the only call interface between Sodium and the code within that module. All
the code within this tag is loaded into its own independent global variable context. It is
used in CSV, SQL and correlation profiles.

Here is a short example tag:

<script lang="JavaScript" jdbc="org.sqlite.JDBC">
 <export name="get_source_key" call="getkey()"/>
 <export name="get_target_key" call="getkey()"/>
 <![CDATA[
 function getkey() {
 return entry.getValue("cn").toLowerCase();
 }
]]>
</script>

This defines a JavaScript module which loads the SQLite JDBC driver, and which has two
exports: get_source_key and get_target_key. In this case, the code that is run in
both cases is the same: the function call getkey(). The function definition itself is defined
in the CDATA block. In this case, it reads the global variable entry, and returns a value to
the caller. Typically input parameters will be passed in global variables, and output results
could be returned in global variables or function return values. Any exception thrown within
the script will be passed back to the caller and reported as an error.

The <script> tag has optional parameter lang which specifies the scripting language
(defaulting to JavaScript), and optional parameter jdbc which specifies the Java class to
load to enable a particular JDBC driver. The <script> tag contains one or more <export>
tags followed by the script code, which is usually enclosed in a CDATA tag.

The <export> tag has two parameters: name is the name of the exported symbol, and
call is a scripting language expression which will be evaluated when that export is being
called. This expression will normally be a call to a function defined in the main body of
the <script> tag.

12.11.6 Scripting interface to Directory entries

The SiEntry class provides an interface between a JSR-223 scripting language (see http://
java.sun.com/javase/6/docs/technotes/guides/scripting/) and the entry being handled. It is
used in mapping rulesets, CSV profiles, SQL profiles and correlation profiles. It provides

Synchronising Directories (using Sodium Sync)

190M-Vault Administration Guide

http://java.sun.com/javase/6/docs/technotes/guides/scripting/
http://java.sun.com/javase/6/docs/technotes/guides/scripting/
http://java.sun.com/javase/6/docs/technotes/guides/scripting/
http://java.sun.com/javase/6/docs/technotes/guides/scripting/

facilities to read and modify the entry, convert values, and report failures and warnings. In
the reference below, the specification of each call is given first, followed by examples
written in JavaScript.

Note that when using the JavaScript implementation shipped with Java, you may come
across unexpected problems when calling methods on strings. This is because there are
two types of string in this implementation: Java String and JavaScript String. Strings passed
from Sodium Sync into JavaScript may be Java strings which won't work with JavaScript
methods (e.g. replace with a regex). The solution is to use the JavaScript expression
String(val) to convert to a JavaScript string first.

12.11.6.1 Reading values

Object getValue(String name);

var value = entry.getValue("sn");

Get the value of a single-valued attribute. An exception is thrown if the value is missing
or if there is more than one value, or if the value is BER and ;binary was not specified
as a suffix to the attribute name. The return value is normally a String, or otherwise it is a
byte[] if there is no string value (e.g. JPEG) or if BER was requested with a ;binary suffix
on the attribute name.

Object getValue(String name, Object def);

var value = entry.getValue("phone", null);
str = "City is: " + entry.getValue("l", "(unspecified)");

Get the value of a single-valued attribute, or return the provided default value “def” if the
attribute is missing. Apart from the special handling of missing values, this call works the
same as the single-argument getValue() call.

Object[] getValues(String names);

var arr = entry.getValues("homephone mobile pager");

Get the values of a multi-valued attribute or list of attributes as an array. Throws an
exception if a value to be returned is BER and ;binary was not specified in the attribute
name. The names argument is a space-separated list of attribute names to read. The objects
in the returned array are normally Strings, but may include byte[] values if the attribute
value does not have a string value, or if BER values were requested.

12.11.6.2 Modifying values

void add(String name, Object value);
void add(String name, Object... values);
void set(String name, Object value);
void set(String name, Object... values);
void remove(String name, Object value);
void remove(String name, Object... values);

entry.add("-objectclass", "user");
entry.set("mobile", "07890 567 890", "07890 123 456");
entry.remove("ou", "test");

Set, add or remove the given value or values to/from the given attribute. In the case of set,
previous values are deleted, whereas for add new values are added to the old ones. Duplicate
values are always eliminated. A prefix of “-” on the attribute name disables syntax checking
of the values, which is done even for remove. A suffix of ;binary on the attribute name

Synchronising Directories (using Sodium Sync)

191M-Vault Administration Guide

causes values to be treated as BER. Each value may be a String, or a byte[] for types that
contain raw data (e.g. JPEG). If ;binary is specified, then the value must be a byte[].

void remove(String name);

Remove all values from the given attribute, which is the same as doing set with no values.

void setOC(String oc_list);
void addOC(String oc_list);
boolean isOCReqd(String oc);

entry.setOC("inetorgperson mboxUser");
if (entry.isOCReqd("mhsuser")) entry.addOC("mhsuser");

Add the given space-separated list of objectclasses to the entry, and also add all the
objectclasses that they depend on according to the local schema. In the case of set, the
existing objectclasses are cleared first. If the objectclass is unknown to the schema, then
it is added anyway, but no dependent objectclasses will be added in that case. For example,
inetOrgPerson would also add organizationalPerson, person and top.

The isOCReqd() call tests whether there are attributes present in the entry that require
the given objectclass to be present, but which are not already handled by any of the current
set of objectclasses.

12.11.6.3 DN and RDN manipulation

DNs can be handled either as strings (for a brief description of the format, see
Section C.2.10, “DN”), or as an array of strings containing a DN unescaped and decomposed
into parts. The advantage of using the decomposed form is that you do not have to worry
about escaping mechanisms . For example, the DN of “cn=fred+sn=bloggs,o=at\+t,c=us”
would be represented as the array ["cn", "fred", "+", "sn", "bloggs", ",",
"o", "at+t", ",", "c", "us"]. Note that the "at+t" value is unescaped in the
array, but must be escaped in the string form.

string getDNStr();
void setDNStr(String dn);

entry.setDNStr("cn=test," + entry.getDNStr());

Get and set the entry’s DN using strings.

string[] getDNArr();
void setDNArr(String[] arr);

var arr = entry.getDNArr();
entry.setDNArr(
 ["cn", value, ",", "ou", my_ou, ",", "c", "us"]);

Get and set the entry’s DN using DNs in the array format, containing attribute names and
values in pairs, separated by “,” and “+” strings.

void setRDN(String name, String value);
void addRDN(String name, String value);

entry.setRDN("cn", "fred");
entry.addRDN("sn", "bloggs");

Synchronising Directories (using Sodium Sync)

192M-Vault Administration Guide

Set the RDN, or add values to the existing RDN. These modify the RDN of the entry, but
leave the parent DN unchanged.

12.11.6.4 Iterators

interface SiForeachAttrCB {
 void run(String attr);
}
void foreachAttr(SiForeachAttrCB cb);

entry.foreachAttr(function(attr) {
 java.lang.System.out.println(attr);
});

Iterate through all the attributes present in the entry, calling the given callback handler for
each attribute name. The set of values are cached before the iteration, which means that it
is possible to make changes to the entry from the callback without upsetting the iterator.

interface SiForeachCB {
 void run(String attr, String enc, Object val);
}
void foreach(SiForeachCB cb);
void foreach(String names, SiForeachCB cb);

entry.foreach("pager mobile", function(attr,enc,val) {
 entry.add("telephonenumber", val);
});

Iterate through all values of all attributes (first call) or all values of the named attributes
(second call), calling the given callback handler for each value. The list of attribute names
is a space-separated string. The set of values is cached before the iteration, which means
that it is possible to modify the entry from the callback without upsetting the iteration.
Callback argument attr is the attribute name, enc is the encoding of the value: null for
String, “data” for byte[] (e.g. JPEG), or “ber” for BER byte[] (e.g. certificate), and val is
the value: either String or byte[].

interface SiMapper {
 Object run(String attr, String enc, Object val);
}
void map(SiMapper cb);
void map(String names, SiMapper cb);

entry.map("pager mobile", function(attr, enc, val) {
 // Make sure it is a JavaScript string
 val = String(val);
 // Discard non-07 numbers
 if (!/^07/.test(val)) return null;
 // Add international code
 return val.replace(/^0/, "+44 ");
}

Iterate through all the values of all the attributes in the entry (first call) or all the values of
the named attributes (second call), calling the callback handler for each value, allowing it
the opportunity to delete the value (return null), modify it (return a new value), or leave it
unchanged (return the original value). The arguments to the callback routine are the same
as for the foreach() method.

Synchronising Directories (using Sodium Sync)

193M-Vault Administration Guide

12.11.6.5 External conversions and conformance

boolean testSyntax(String name, Object value);
boolean testSyntax(String name, Object... values);

if (!entry.testSyntax("telephoneNumber", value))
 entry.fail("Invalid telephone number: " + value);

Test that one or more values have the correct syntax for the given attribute type. Does not
make any change to the entry, and does not record checking errors against the entry in case
the test fails. Returns ‘true’ if all values have valid syntax, and ‘false’ otherwise.

String convFrom(String syntax, String value);
String convTo(String syntax, String value);

entry.map("mhsoraddresses", function(attr,env,val) {
 return entry.convFrom("ad_oraddr", val);
});

Convert an attribute value to or from a known external syntax. The only external syntax
supported is ad_oraddr for Active Directory O/R Addresses. The return value is ‘null’ if
the conversion is not possible.

void normalize(String names);

entry.normalize("mhsoraddresses");

Normalize all the values in the given attributes (a space-separated list) to the preferred
printable representation, if there is one.

void conform(boolean strip, boolean insert);

entry.conform(true, true);

Force the entry to conform to the local schema. If strip is true, then all unknown
objectclasses and all attributes not belonging to an objectclass are stripped from the entry.
If insert is true, then ‘unset’ values are inserted for all attributes which are missing but
required by the objectclasses present.

void loadResultSet(ResultSet rs);
void loadResultSet(ResultSet rs, String... attr_names);

entry.loadResultSet(rs, ["cn", null, "sn", "title"]);

Load all the attribute values from the given JDBC ResultSet into the entry. The objectclasses
are set to untypedobject and extensibleobject. All the columns in the result set are loaded
up as strings using their SQL column names as unchecked attribute names (first form), or
using the attribute names provided (second form). A SQL NULL value causes the
corresponding attribute to be omitted. In the second form, a null attribute name indicates
that the corresponding column should be skipped.

12.11.6.6 Reported warnings and failures

void warn(String msg);
void fail(String msg);

entry.warn("This is a warning");

Synchronising Directories (using Sodium Sync)

194M-Vault Administration Guide

if (!/^07/.test(entry.getValue("mobile")))
 entry.fail("Check failed: bad mobile number");

Report a warning (first call) or a check failure (second call). A check failure may cause a
complete failure of the sync or may be treated as warning, depending on the overall checking
mode set in the sync profile.

12.12 Fixing broken sync states

The basic sync operations are stateless, and may be interrupted and restarted without any
difficulty. However, certain sync configurations do maintain their own state locally or
modify external state, and so may be left in a condition that requires operator intervention
in certain cases of unexpected error, of server shutdown or of user abort whilst a sync was
in progress. Normally the Sodium Sync will attempt to correct the situations by ‘rolling
back’ to a previous safe state, but there are cases where this is not possible, especially when
changes are being applied directly to a DSA. In these cases, it is necessary that the operator
examine the situation and the contents of the files left behind to decide what is the best
course of action.

In each case below, the simplest option is described first, and the following options only
need to be considered if the implications of the first option are unacceptable.

12.12.1 Cached sync

If a cached sync is interrupted and cannot recover, there may be a tree file with the extension
.ldif.NEW still present in the cache folder. This is the partial new tree file created by the
sync. There are three options to fix things up:

• Delete the .ldif.NEW file, which will cause any changes already generated and committed
by the previous sync to be duplicated on the next one, probably causing very many
warnings when these duplicate changes come to be applied.

• Force the cached sync to do a complete update on the next sync, for example by deleting
all the TREE*.ldif files or by setting up a complete update in the GUI.

• Merge the .ldif.NEW with the remainder of the previous tree LDIF file (spliced in at the
point in the DN order where the incomplete file left off) to create a new tree file with
the .ldif extension. This avoids duplicating changes as far as possible, although there
may be a few entries missing from the end of the incomplete tree file.

Explanation: The Cached Sync works by storing a ‘tree’ LDIF file of the complete contents
of the target subtree immediately after each sync (assuming that all the changes generated
by that sync have been applied correctly on the target.) Several previous tree files are kept,
but only the last one is used to generate changes during the following sync. If the sync is
interrupted, a partial tree file may be left behind. In this situation only a part of the source
and target subtrees have been scanned to generate changes, and changes have not yet been
generated for the part of the subtree not yet reached in the partial tree LDIF file. However,
looking at the DN reached in the partial file, and searching the previous tree file for that
same DN, the partial tree file can be reconstructed with the correct contents of the remainder
of the target subtree which can be copied from the previous tree file. This is valid because
this data is unchanged since the last sync as the scan had not reached that point.

12.12.2 Queue out

If a previous sync was interrupted, there may be a part-written change file with the extension
.ldif.NEW in the queue directory. There are two options to fix things up:

Synchronising Directories (using Sodium Sync)

195M-Vault Administration Guide

• Delete the file and discard any changes that might be in it. Note that if this file contains
changes for a remote DSA, doing so will cause those changes to be missing from the
remote DSA until the next complete update is made.

• Rename it with a plain .ldif extension and update the serial number in the
output_next_serial.txt file so that the changes will be processed by whatever reads the
queue. Note that it may be necessary to edit the file and clean up the last entry in the
LDIF which may be incomplete.

Explanation: The queue output works by creating a ‘new’ LDIF file to write to, renaming
it to the correct extension only when it is complete. If the sync was interrupted, the last
few changes written to the LDIF may be cut short due to output buffering, so this needs to
be checked and corrected before the file can be sent on.

12.12.3 Queue in

If the previous sync was interrupted, there may be a part-processed input change-file with
the extension .ldif.PROCESSING in the queue directory. There are three options to fix
things up:

• Rename the file back to the plain .ldif extension. The file will be processed again from
the start at the next sync. This might cause a large number of changes to be repeated,
probably giving many warnings.

• Delete the file, discarding all the changes in the later part of the file that have not been
processed. The input_next_serial.txt file will have to be updated with the next expected
serial number.

• Look to see what changes have actually been applied to the final destination, and edit
the file to remove those changes, before renaming the file back to a plain .ldif extension
so that it will be processed again.

Explanation: The queue input works by processing the input LDIF from the beginning to
the end. If the sync was interrupted and a file is left in a part-processed state, then only the
first part of the file will have been processed, and the rest will be unprocessed. The choice
is whether to repeat the first part, or discard the second part, or attempt to remove the initial
part that has already been processed.

Synchronising Directories (using Sodium Sync)

196M-Vault Administration Guide

Chapter 13 Managing Certificate Authorities
(using Sodium CA)
This chapter describes the Sodium CA application, and explains how to use it to help
configure and manage a PKI (Public Key Infrastructure) for Isode products.

13.1 Introduction

Sodium CA is a GUI utility that allows you to create and administer one or more Certificate
Authorities (CAs). The primary purpose of Sodium CA is to make it easy to configure and
manage X.509 PKI for Isode servers and clients without having to rely on a third-party
CA. It is not necessary to use Sodium CA in order to be able to use X.509 functionality in
Isode products, but in many cases it may prove to be the simplest or most cost-effective
means of doing so.

Each CA that is managed using Sodium CA maintains a private database (CADB) which
includes the following information:

• the CA’s own certificate and private key

• a list of certificates issued by the CA and revoked certificates

• an up to date Certificate Revocation List (CRL).

This information is shown in Sodium CA’s CA Components tab.

Figure 13.1. Sodium CA’s CA Components

The CADB also contains a copy of all certificates that have been issued, and provides a
simple interface that allows you to locate and examine any certificate (see Figure 13.7,
“Sodium CA’s certificate view”).

Managing Certificate Authorities (using Sodium
CA)

197M-Vault Administration Guide

Sodium CA shares many capabilities with Sodium, and is designed to allow you to associate
a CA with a specific Directory Server. Once this has been done, the CA can publish data
directly into the Directory, where client applications typically expect to find it.

Having an associated Directory also means that Sodium CA is able to browse inside the
Directory and issue certificates and identities corresponding to entries inside the Directory
without requiring that users submit CSRs.

You can use Sodium CA to create an arbitrary number of separate CAs. For any CA that
Sodium CA creates, you can:

• Generate a Certificate Signing Request (CSR) for the CA itself

• View information about Certificates, CSRs, etc., that the CA knows about

• Issue certificates in response to a CSR

• Revoke a previously issued certificate

• Renew or rekey previously issued certificates

• Generate and publish Certificate Revocation Lists (CRLs)

• Generate and publish cross-certificates for other CAs.

The following sections will describe these functions in more detail.

13.2 Creating a CA

Sodium CA allows you to configure and manage multiple CAs, each of which is described
in a separate CA “profile” (rather like Sodium’s list of bind profiles).

When Sodium CA is started, it will display a dialog box listing the profiles corresponding
to CAs that have previously been configured, or will prompt for the password to be used
to decrypt the file containing CA profiles.

The first time you start Sodium CA, an empty list will be displayed, and the Encrypt button
is enabled.

Figure 13.2. Empty list of CA profiles

Managing Certificate Authorities (using Sodium
CA)

198M-Vault Administration Guide

Isode recommends that you encrypt the CA profiles file, which will mean that Sodium CA
will be able to save sensitive information (such as passwords) in the file. You can encrypt
the profile at any stage, but until you do, passwords will not be stored in it, and Sodium
CA will prompt you for passwords and passphrases every time they are required.

To create an operational CA, Sodium CA will:

• create a CA database on the local file system

• generate a private key for the CA

• create a self-signed certificate for the CA, or generate a CSR to be signed by another
CA

• (optionally) create an entry in a Directory where the CA is configured to publish PKI
information.

A CA has a distinguished name (DN) which will appear as the “issuer” field of any
certificate which it issues. Isode recommends that any CA you create be associated with a
Directory, in which case the DN that you choose for your CA will reflect the structure of
the Directory being used.

For example, if your Directory is structured with a single top-level entry of c=US, then
your CA’s DN might be cn=Sodium CA, c=US. The wizard used to create a new CA allows
you to browse a Directory tree and select a suitable location for the CA’s entry. If you do
not wish to associate the CA with a Directory, then you will be able to use any legal DN
for the name of your CA.

So when creating a new CA, you need to choose:

• a “display name” to identify this CA in the list of those managed by Sodium CA

• where on the file system the CA’s database (CADB) should be located

• whether the CA is to be associated with a Directory

• a suitable DN for the CA (which may be depend on Directory structure)

• various options relating to the CA’s own private key and certificate content

• whether the CA is a root CA (i.e. it has a self-signed certificate).

To invoke the wizard to create a new CA, either use SodiumCa > Create menu option, or
click on the New button in the Profile Manager window. A series of pages will prompt
for the required information, and will provide suitable default values where appropriate.

Managing Certificate Authorities (using Sodium
CA)

199M-Vault Administration Guide

Figure 13.3. Creating a new CA

The CA’s private key is used whenever the CA issues certificates or CRLs, and must be
considered as a particularly sensitive piece of information. The CA’s key is stored in the
CADB, and so Isode recommends that the CADB be located on a system which is suitably
secure (i.e. such that unauthorized users have no access to it).

For extra security, the CA’s private key may be encrypted. A passphrase is used in this
case to encrypt the CA’s key, and will be required whenever the CA is operated. If you opt
to encrypt the CA’s private key, then the passphrase will be stored in the CA profile,
provided the profile itself has been encrypted. In this way, you can use a single passphrase
(the Sodium CA profile passphrase) to protect a set of separate CAs.

By default, Sodium CA assumes that any CA you create will be associated with a Directory.
If you leave this option checked, then you will be prompted to enter suitable bind information
for the Directory (again, any passphrase you specify will be saved in the Sodium CA profile
file, provided it has been encrypted). Please ensure that the chosen bind DN has access to
create and modify the contents of CA entry and is able to write certificates (attribute type
userCertificate) to other entries. You will then be able to browse the Directory to find a
suitable location for the CA itself. If an entry in the DSA already exists corresponding to
your CA, you may choose to “promote” the entry into the CA’s entry; alternatively you
may create a new entry in the Directory beneath an existing entry.

Managing Certificate Authorities (using Sodium
CA)

200M-Vault Administration Guide

Figure 13.4. Choosing to add a new entry for a CA

If the CA is not associated with a Directory, then you will be prompted to enter a DN of
your own choice.

Various options relating to key generation may be specified, as well as specific certificate
extensions that should appear in the CA’s own certificate. Refer to RFC 5280 for details
on these values.

On clicking Next button, you can choose to select protocol(s) for sharing certificate status.
The options provided are shown in the figure below. Selecting one or more options will
have an impact on the CRL Distribution Point and Authority Key Identifier extensions that
the CA will use in the extensions of the issued cetificates (Refer RFC 5280).

Managing Certificate Authorities (using Sodium
CA)

201M-Vault Administration Guide

If HTTP was chosen as one of the options to share CRLs, the next page will let you configure
HTTP directives provided the CA was configured to work with an M-Vault Directory
Server.

The next two pages will let you configure CRL Distribution point and Authority Information
Access extensions. Default values will be offered based on the Directory Server details
and options chosen for certificate status sharing.

Managing Certificate Authorities (using Sodium
CA)

202M-Vault Administration Guide

On pressing Next, the wizard page lets you set the Key Usage and Basics Constraints
extension (RFC 5280) for the CA.

Managing Certificate Authorities (using Sodium
CA)

203M-Vault Administration Guide

Once the extensions have been configured, the wizard will offer the choice of whether it
is a root CA or a subordinate CA. If the CA is to be a root CA, then you should create a
self-signed certificate. In this case, a CA certificate will be created and installed in the CA
database. Additionally, if you have established an association with a Directory server, the
Directory entry will be updated so that it contains the CA’s certificate and (initially empty)
CRL.

If the new CA is to be a subordinate CA, then you should generate a Certificate Signing
Request (CSR) for the CA itself. The CSR will be stored in the CADB, where it can be
viewed or exported (from the CA Components page). Once a corresponding certificate
has been obtained from a suitable CA, you can “import” the certificate into the CADB,
and the CA will then be operational.

13.3 Issuing certificates

In most cases, certificates are issued in response to a Certificate Signing Request (CSR).
Use the Certificate Requests page to view pending CSRs. This window allows you to
browse all CSRs in a given Directory.

Managing Certificate Authorities (using Sodium
CA)

204M-Vault Administration Guide

Figure 13.5. Displaying certificate signing requests

Sodium CA will display any files in the selected Directory which have an extension of
either .p10, .pem, .csr or .req provided they contain a valid CSR. You can view, copy, or
delete any CSR using this page. If appropriate, you can issue a certificate in response to a
CSR, by clicking Issue Certificate.

A CSR is a request for a certificate, and contains information which the requestor would
like to have appearing in the certificate. However, when issuing a certificate, you may wish
to disallow or modify certain information supplied in the request. Specifically, Sodium CA
allows you to override the following information which would otherwise be copied from
the CSR into the certificate:

• the subject DN for the certificate

• any subjectAltNames

• supported extensions.

Once you have confirmed the information required, Sodium CA displays information about
the certificate that will be issued.

Managing Certificate Authorities (using Sodium
CA)

205M-Vault Administration Guide

Figure 13.6. Issuing a certificate

The certificate, once issued, will be added to the CADB and can optionally be written to
an external file. Additionally, if the CA is associated with a Directory, and the subject DN
of the certificate matches an entry in the Directory, you also have the option of updating
the Directory entry so that it contains a copy of the certificate. Once a certificate has been
issued, it is not possible to change any of the fields inside it. However, if you do realise
that you have used the wrong values, then you may be able to use the Renew Certificate
option (see below).

13.4 Managing certificates

The Certificates page in Sodium CA allows you to view all the certificates that have been
issued by the CA.

Managing Certificate Authorities (using Sodium
CA)

206M-Vault Administration Guide

Figure 13.7. Sodium CA’s certificate view

• A summary line is shown for each certificate in the CADB, including a coloured icon
to indicate whether the certificate is active (green), expired (yellow) or revoked (orange).
The icon also contains a “+” sign for any certificate which is itself a CA certificate.

• You can customize the view to show only certain types of certificates (e.g. just the active
ones), and you can examine a specific certificate in detail by using the View button.

13.5 Revoking a certificate

A certificate can be revoked using the Revoke option. The consequences of revoking a
certificate are:

• the certificate is marked as revoked in the CADB

• a new CRL is generated, which will include the revoked certificate.

Revoking a certificate has no effect on users unless certificate validation makes use of the
newly generated CRL. It is therefore important to publish the updated CRL as soon as it
is created, to minimize the risk of a revoked certificate being used.

If the CA is associated with a Directory, then Sodium CA will automatically update the
CA’s Directory entry to contain the newly generated CRL. Otherwise, you should use the
CA Components page to export a copy of the CRL and publish it in accordance with
whatever local policy is appropriate

Managing Certificate Authorities (using Sodium
CA)

207M-Vault Administration Guide

13.6 Renewing a certificate

A previously issued certificate may be “renewed”, which means that a new certificate is
issued, based on information in an existing certificate. It may be useful to do this when,
for example, a previously issued certificate has, or is about to, expire. Alternatively, you
might do this if you made a mistake and forgot to include a certain subjectAltName in the
original certificate.

The new certificate will contain the same public key as the original certificate. To issue a
replacement certificate that uses a different key, use the “Rekey” option (see below).

The Renew Certificate option will invoke a set of pages similar to those displayed for
Issue Certificate (in some ways it is equivalent to responding to the initial CSR again).
However, since a “renewed” certificate is replacing an existing one, you have the option
to revoke the old certificate. Should you choose to revoke the old certificate, then a CRL
will be produced and should be published. (See Section 13.5, “Revoking a certificate”).

13.7 Rekeying a certificate

When a certificate is issued in response to a CSR (or “renewed”), the public key in the
certificate will be taken from the CSR. In this case, the corresponding private key is known
only to the originator of the CSR (and not to Sodium CA).

The Rekey option will generate a new public/private key pair, and use the new public key
to issue a new certificate which is in all other respects (apart from validity dates) a copy
of one that has previously been issued.

Rekeying a certificate may be appropriate in cases where, for example, a user has lost his
original private key (or forgotten the passphrase which protects it): rather than requiring
that the user create a new key pair and CSR which contains all the same options as the
original, it may be easier to “rekey” his certificate.

Note: Since the rekey operation means that Sodium CA will itself have access
to the user’s private key, it may not be an appropriate mechanism in all
environments (depending on what security policy is defined). Additionally, once
a certificate has been rekeyed, the user will not be able to use it until he has been
told what the private key is.

When you invoke the option to “rekey” a certificate, a series of screens will take you
through the process of choosing key parameters and validity dates for the new certificate,
as well as providing you with the option of revoking the original certificate (in which case
a CRL will be generated, and you should ensure that it is published).

The final step in rekeying a certificate is the generation of a passphrase-protected PKCS#12
file containing the certificate and private key (as well as copy of the CA’s own certificate).
The PKCS#12 file can be supplied to the user (e.g. via email), who will also require the
passphrase in order to make use of it (the passphrase should be communicated by some
mechanism other than the email message containing the PKCS#12 file).

Managing Certificate Authorities (using Sodium
CA)

208M-Vault Administration Guide

Once in receipt of the PKCS#12 file and passphrase, the user will be able to make use of
the new certificate. It is probably appropriate for the user to change the PKCS#12 passphrase,
which can be done using Sodium (see Section 3.10, “Managing identities”).

13.8 Updating the CRL Distribution Point

The CRL Distribution Point appears in the Issuing Distribution Point and the CRL
Distribution Point extension of the CRL (Certificate Revocation List) and the issued
Certificates respectively. These extensions identify how CRL information is obtained. The
CRL Distribution Point for the CA can be updated by selecting Operations → CA →
Update CRL Distribution Point menu option.

Figure 13.8. Sodium CA’s CRL Distribution Point Editor

One or more distribution point names which describe a different mechanism to obtain the
same CRL can be added to the distribution point.

The Add DN... button is used to specify the name of a directory entry that contains CRL
information in either the certificateRevocationList or authorityRevocationList attribute.
This value will be used only if the application has a locally configured directory server.

The Add LDAP URI... button should be used to point to the relevant attribute type
(certificateRevocationList or authorityRevocationList) in a specified directory entry on
a given LDAP host and port that holds the CRL.

The Add HTTP URI... and Add FTP URI... buttons can be used to specify HTTP and
FTP URIs for fetching the CRL.

The distribution point names can be subsequently edited and removed using the Edit... and
Remove buttons. The Remove button provided at the bottom should be used for removing
the distribution point of the CA.

Once the distribution point has been updated, subsequently issued certificates and CRLs
will contain the updated distribution point in the relevant extension. Note that the CRL
Distribution Point and Issuing Distribution Point extension in the CRL and Certificates is
optional and will only be added if the option to include the extension has been selected
while generating them.

Managing Certificate Authorities (using Sodium
CA)

209M-Vault Administration Guide

13.9 Updating the Access Description List

The Access Description List appears in the Authority Information Access extension of the
CRL (Certificate Revocation List) and the issued Certificates. This extensions indicates
how to access information and services for the issuer of the certificate or CRL in which
the extension appears. The Access Description List for the CA can be updated by selecting
Operations → CA → Update Access Description List menu option.

Figure 13.9. Sodium CA’s Access Description List Editor

One or more locations to obtain the information and services of the CA can be added to
the access description list.

The Add CA Issuers... button is used to specify means to access additional information
that lists certificates that were issued to the CA to aid in certificate path generation.

The Add OCSP... button is to specify the location of the OCSP responder and is used when
revocation information for the certificate containing the Authority Information Access
extension is available using the Online Certificate Status Protocol (OCSP).

The authority information access description list contents can be subsequently edited and
removed using the Edit... and Remove buttons.

Once the access description list has been updated, subsequently issued certificates and
CRLs will contain the updated list in the relevant extension. Note that the Authority
information Acess extension in the CRL and Certificates is optional and will only be added
if the option to include the extension has been selected while generating them.

13.10 Directory operations

Associating a CA with a Directory provides a number of benefits:

• When Sodium CA connects to the Directory, it checks PKI information inside the CA’s
own entry, and automatically updates any stale information (such as CRLs).

Additionally, Sodium CA will look for any new information in the Directory which may
have been written by another CA. Specifically, it will attempt to complete any outstanding

Managing Certificate Authorities (using Sodium
CA)

210M-Vault Administration Guide

cross-certificate pairs (see below), and, for a CA which is a subordinate CA, Sodium
CA will check to see whether the CA’s own certificate has been published by another
CA.

• When a new certificate is issued, then Sodium CA will look in the Directory for an entry
matching the subject DN of the certificate. If there is a matching entry, Sodium CA will
provide the option of updating the entry so that it contains the new certificate.

• Whenever a certificate is revoked, the new CRL is automatically published to the CA’s
entry.

• A “Directory browse” view is enabled, which gives a PKI-oriented view of information
inside the Directory, and allows the creation of new X.509 identities and cross-certificates
for existing entries inside the Directory.

13.10.1 Browsing the Directory

To browse the Directory with which a CA has been associated, use the View → New
Directory Browse View menu option.

Figure 13.10. Browsing the Directory inside Sodium CA

Browsing a Directory using Sodium CA works in a similar way to Sodium, allowing you
to navigate the Directory tree to locate and examine individual entries. However, the view
differs from Sodium in that it displays only information that is likely to be useful for a CA
administrator; specifically, when you select an entry in the tree, the entry viewer will display
a single page containing PKI related attributes.

In the case of an entry corresponding to a CA, the attributes shown include:

• any user or CA certificates

• any Certificate Revocation Lists or Authority Revocation Lists

• any cross-certificates.

For a non CA entry, the viewer will show only certificate attributes.

Managing Certificate Authorities (using Sodium
CA)

211M-Vault Administration Guide

13.10.2 Creating an X.509 identity

Sodium CA uses PKCS#12 files to store identities. An identity contains a certificate and
a private key, and is protected by a passphrase.

Typically, it is not appropriate for anyone other than the certificate owner to have access
to the private key, and this is the model followed when using Sodium to create an identity:
when a user uses the New X.509 Identity option in Sodium (see Section 3.10, “Managing
identities”), a private key and CSR are generated, but only the CSR is sent to the CA. Once
the certificate has been issued, Sodium combines the certificate with the private key to
build the PKCS#12 file which may then be used as an identity.

Sodium CA also provides the means to create an identity in a single step, obviating the
need for a client to generate a CSR and “request” an identity. In this case, Sodium CA takes
responsibility for generating a key pair, and then issues a certificate and builds a PKCS#12
file which can be given to the user.

An advantage of having Sodium CA be able to create identities is that it can simplify the
process so far as the user is concerned — rather than having to “request an identity” and
to specify various certificate options, he is just given a file and told “use this”.

A disadvantage of this mechanism is that the private key and PKCS#12 file do not remain
in the exclusive possession of the user. When Sodium CA is used to generate an identity,
then it would be possible for the CA administrator to keep hold of a copy of the identity
and pretend to be the user by “borrowing” the identity. Such “borrowing” would not be
possible when the private key is unavailable to the CA. The same issue applies in the case
of “rekeying” a certificate (see above). However, depending on what security policy is in
effect, you may decide that it makes sense to use Sodium CA to generate identities.

Sodium CA can generate an X.509 identity corresponding to any entry in the Directory
(with the exception of CA entries). Use the Generate X.509 Identity button to initiate the
process; a series of pages are displayed which allow you to specify the properties of the
certificate to be created.

Once the identity has been created, the issued certificate will be added to the CADB, and
the identity will be written to disk in a passphrase-protected PKCS#12 file. You also have
the option of updating the user’s Directory entry so that it contains the newly issued
certificate.

13.10.3 Issuing cross-certificates

In a PKI where more than one CA is being used, it may be convenient to indicate the level
of trust between two CAs. A cross-certificate is a certificate that is issued by one CA to
another.

Typically (but not necessarily), when CA1 trusts CA2, then CA2 will also trust CA1. In
this situation, there will be two cross-certificates: one issued by CA1 to CA2, and one
issued by CA2 to CA1. Because cross-certificates are often paired in this way, they are
stored in the Directory inside “cross-certificate pair” values.

When browsing the Directory, if you select an entry which represents a CA, Sodium CA
will enable the “Issue Cross Certificate” option if it is possible to issue a cross-certificate
for the CA in question.

When CA1 issues a cross-certificate to CA2, the new certificate will be added to CA1’s
database, and it will also be stored in CA1’s Directory entry as one half of a “cross-certificate
pair” attribute.

Managing Certificate Authorities (using Sodium
CA)

212M-Vault Administration Guide

Figure 13.11. A partially completed cross-certificate pair

The picture above shows what has happened after the CA has issued a cross-certificate for
another “Sodium CA”, but there was no corresponding cross-certificate that had been issued
by “Sodium CA”.

Whenever Sodium CA is used to manage the other CA, it will check in the Directory entry
for that CA to see if a reciprocal certificate has been issued. If it finds one, then it will copy
it and complete the cross-certificate pair.

Figure 13.12. Completed cross-certificate pair

Managing Certificate Authorities (using Sodium
CA)

213M-Vault Administration Guide

Chapter 14 OAuth2 Capabilities
OAuth2 is a Web based framework that provides secure authorization services for Web
based applications. The system is based on a set of HTTP and token exchanges between
the Web service, Web browser and OAuth2 server. M-Vault includes an OAuth2 server
component that provides authentication and authorization services to Isode Web-based
applications, a current example being Red/Black.

Part of the OAuth2 configuration is intended to be managed by the Cobalt user and account
provisioning application and the Cobalt manual should be consulted for this purpose. This
chapter provides a lower level and more detailed view of the M-Vault OAuth2 service
configuration, including instructions for how to view and manage the configuration using
Sodium.

14.1 Overview

In order to authenticate a user to an Isode application (the OAuth2 client) the application
first requests a session token from the OAuth2 service. At this point the OAuth2 service
presents a login screen to the user (through their browser). Credentials are checked against
the credentials stored in the user's entry. Once successfully authenticated the OAuth2 server
returns session and refresh tokens to the Isode application (OAuth2 client) and redirects
the user back to that service. Client tokens have a lifetime (duration) and must be refreshed
periodically by the client service. If the session token expires and cannot be refreshed due
to refresh token expiry then the user must re-authenticate. Note also that before the OAuth2
server will accept requests from an OAuth2 client trust has to be configured, where trust
is established by way of a shared secret. Once a user has been authenticated the Web
application can then also request what application specific permissions have been granted
to the user.

Since version R19.0, it is also possible to leverage Single Sign-On mechanism instead of
using a login form (Windows only, see Section 14.5, “Single Sign-On (SSO)”).

The OAuth2 service is part of M-Vault and is activated when it is configured and enabled.
The configuration stored in and read from M-Vault includes:

• Server network configuration (listen address, TLS configuration).

• OAuth2 client configuration. An OAuth2 client is a Web service or application. The
client configuration consists of the credentials that establish trust between the client and
the OAuth2 server (a client identifier and a shared secret or TLS based authentication)
and the address of the OAuth2 client (in the form of a URI). Other configuration includes
per-client customization of Web pages (specifically a login page) that the OAuth2 server
presents to users.

• OAuth2 client specific permissions. Clients can configure permissions relevant to the
Web service they provide. These are configured in the directory.

• Per-user permissions. Web service permissions are in the user's entry in the directory.

In the following sections we detail the steps required to get the OAuth2 service up and
running.

OAuth2 Capabilities

214M-Vault Administration Guide

14.2 OAuth2 Server Configuration

This configuration object holds the operational parameters of the OAuth server.

14.2.1 OAuth Startup

On M-Vault's startup, the web API will start up if the OAuth Server configuration is present
and oauthEnable is set to true.

14.2.2 Location in the Directory

The OAuth2 server configuration is stored in cn=oauth, cn=config and is managed by
Sodium and MVC.

14.2.3 Configuring with Sodium

The creation of the server configuration can be done by using Sodium "Add below..."
feature on cn=config entry and choosing "OAuth2 Config". Keep in mind that this subtree
requires specific access rights.

The fields (with corresponding attribute types) shown in Sodium for the server configuration
entry are:

• Server Address (oauthServerAddress) The address the OAuth2 service will listen on.
Optional, default value: 0.0.0.0, i.e. all network interfaces.

• Authorize Port (oauthServerPort) Specifies the port the OAuth2 service will listen on
for browser requests. Optional, default value: 19443.

• Token Port (oauthTokenPort) Specifies the port the OAuth2 service will listen on for
OAuth2 Client requests. Optional, default value: 19543.

• Token Duration (oauthTokenDuration) Specifies how long the access token are valid
for, in seconds. Optional, default value: 3600.

• Refresh Token Duration (oauthRefreshTokenDuration) Specifies how long the refresh
token is valid for, in seconds. Optional, default value: 7200.

• Use TLS Strong Client Authentication (oauthUseClientStrongAuth) Specifies if the
OAuth2 Server uses TLS to authenticate OAuth Clients. Trust anchors must be available
in M-Vault for this to work. If operational, the OAuth2 Client's oauthClientSecret
attribute is ignored. Optional, default value: false.

• Enable OAuth2 (oauthEnable) Turn on or off OAuth2 feature. Note that it will
dynamically turn on/off the OAuth server without the need to restart M-Vault. Optional,
default value: true.

14.2.4 Example LDIF

An alternative way to create the OAuth2 server configuration directory entry is to LDIF
load a configuration. This is advanced usage and you should not use this if you're not sure
of what you are doing. Again, Sodium is the preferred method to configure the OAuth2
service.

Example LDIF:

version: 1

OAuth2 Capabilities

215M-Vault Administration Guide

dn: cn=oauth,cn=config
objectClass: oauthConfig
cn: oauth
oauthServerAddress: 127.0.0.1
oauthServerPort: 19443
oauthTokenPort: 19543
oauthTokenDuration: 3600
oauthRefreshDuration: 7200
oauthEnable: true

14.2.5 TLS configuration

TLS is mandatory in order to protect the issued tokens. The OAuth service won't start
otherwise. You need a suitable TLS identity configured in the DSA (see Section 3.10.1,
“Generating a certificate request”).

14.3 OAuth2 Service Configuration

The OAuth2 service configuration holds aspects that are domain dependant.

In general OAuth2 service configuration should be performed using the Isode Cobalt
product, and configuration of the OAuth2 service is described in the Cobalt manual. The
following sections go through the configuration schema in detail, and show how it can be
view and modified directly using Sodium. Again, please note that Cobalt is the preferred
method of configuring the OAuth2 service.

14.3.1 Configuring With Sodium

The fields (with corresponding attribute types) shown in Sodium for the service configuration
entry are:

• User Base (oauthUserBase) The base of the subtree where in the directory the OAuth
service should look for user entries being authenticated. The user must have a
userPassword attribute, and an attribute with a unique value accross users to identify
it. Optional, default value: cn=Users, c=xx.

• User Attribute (oauthUserAttribute) This field specifies which attribute to use as an
identifier for the user. It is optional and its default value is mail.

Such service configuration can be created by right clicking on the domain entry, selecting
"Add below..." and choosing "OAuth2 Service".

14.4 OAuth2 Client Registration

The client is an Isode application that uses the OAuth2 service as its means of authentication
and authorization. In order to permit clients to access the service they must be configured
(or pre-registered) in the the directory. The per-client configuration consists of a single
entry in the directory.

This registration is usually taken care of by Cobalt.

OAuth2 Capabilities

216M-Vault Administration Guide

14.4.1 OAuth2 Client Object

Available configuration fields (as shown in Sodium):

• Client ID (oauthClientID) A unique identifier for the OAuth Client.

• Client Secret (oauthClientSecret) The password sent by the OAuth2 client to
authenticate with the OAuth2 server. In the case of strong client authentication using
TLS, this value is ignored.

• Redirect URI (oauthRedirectURI) The URL the client listens as part of the OAuth2
flow. This attribute must be a hostname.

• Server Type (oauthServerType) The type of product this OAuth Client is. This is a
free form string used by Cobalt to associate a particular application type with an
appropriate set of configuration options (particularly with respect to the permissions
provided by that application).

• Service Domain (oauthServiceDomain) The domain where to find the OAuth2 Service
Configuration (see Section 14.3, “OAuth2 Service Configuration”) to use.

• Token Duration (oauthTokenDuration) The lifetime of the access token. This overrides
the value set in the OAuth2 server configuration entry, so each OAuth2 client instances
can be configured with specific session lengths. The OAuth2 client will maintains sessions
for as long as the access token is valid.

• Refresh Token Duration (oauthRefreshTokenDuration) A refresh token is used by
the client to refresh an expired access token. This value controls the lifetime of refresh
tokens supplied to this client. This overrides the global value set in the server
configuration entry so that each client can be configured with its own session length.
The OAuth Client uses this to get a new access token without having the user to enter
its credentials again.

• Use SSO (oauthUseSSO) Windows only (see Section 14.5, “Single Sign-On (SSO)”).
This field specifies that by default, OAuth Client will use SSO to authenticate the user.
It is optional and its default value is false.

• SSO Domain (oauthSSODomain) Windows only (see Section 14.5, “Single Sign-On
(SSO)”). This field specifies which domain to use when using SSO. oauthUseSSO must
be set to true for this attribute to be used. It is optional and its default value is mail.

14.4.2 Example LDIF

An alternative way to create the OAuth2 service configuration directory entry is to LDIF
load a configuration. This is advanced usage and you should not use this if you're not sure
of what you are doing. Again, Cobalt is the preferred method to configure the OAuth2
service.

Example LDIF containing an OAuth2 client registration entry:

version: 1

dn: oauthClientId=isode-dummy-1,cn=OAuthConfig,c=xx
objectClass: oauthClient
oauthClientId: isode-dummy-1
oauthClientSecret: password
oauthRedirectUri: https://localhost:19444/callback
oauthServerType: dummy_example
oauthTokenDuration: 3600
oauthRefreshTokenDuration: 7200

Edit the values to suit your needs then use Sodium to load the file. Please refer to Sodium's
manual for the instructions. Refer to Cobalt's manual for valid oauthServerType values.

OAuth2 Capabilities

217M-Vault Administration Guide

14.5 Single Sign-On (SSO)

Since version 19.0, SSO is supported on Windows only. This allows users to authenticate
without the need of a login form, streamlining the usage of application that uses OAuth2.

14.5.1 Overview

On a Windows workstation which is part of a Windows Domain managed by an
ActiveDirectory, a user using an Isode web application supporting OAuth2 (e.g. Red/Black)
should be able to be authenticated without the need for entering a password.

The browser trying to access an Isode application (e.g. Red/Black) which has been
configured to use SSO will be challenged by the OAuth2 server to get a Kerberos token
from the ActiveDirectory service managing the domain. Once the negotiation is finished,
the OAuth2 process will resume normally.

To enable SSO, you need:

• A Windows network using ActiveDirectory Domain Service (AD DS). This manual will
not cover this part.

• M-Vault fully configured for OAuth2 and SSO activated (see above)

• Properly configured browser to allow them to speak with AD (see below)

14.5.1.1 Mozilla Firefox Configuration

• Type about:config in the address bar

• Search for trusted-uris

• Put in both network.automatic-ntlm-auth.trusted-uris and
network.negotiate-auth.trusted-uris, https://your_network_domain (e.g.
https://kdc.local)

14.5.1.2 Internet Explorer Configuration

• Open "Control Panel" -> "Network and Internet" -> "Internet Option"

• In the dialog, go to "Security" tab

• Select "Local Intranet" and click "Sites" button

• Add https://your_network_domain (e.g. https://kdc.local)

14.5.1.3 Google Chrome Configuration

Follow the same instructions as for Internet Explorer.

OAuth2 Capabilities

218M-Vault Administration Guide

Chapter 15 SPIF Editor
This chapter describes the SPIF Editor application and explains how to use it to create, edit
and view a SPIF (Security Policy Information File) and various utility functions.

The term SPIF referes to Security Policy Information File. A Security Policy is represented
as an SDN.801c SPIF in the Open XML SPIF format. A SPIF is structured data which
defines for a given policy ID the valid classifications and security categories. It also can
define strings to be associated with labels, which are used for mark-up of data for human
reading. It can define equivalent policies, which enables labels defined by a different
authority to be associated with labels defined in this SPIF. It also defines how the ‘Access
Control Decision Function' (ACDF) is to be applied.

15.1 SPIF Editor Overview

SPIF Editor is a GUI that allows you to create, edit and view SPIFs. The primary purpose
of the editor is to make it easy to create and manage security labeling for Isode servers and
clients. It is not necessary to use the SPIF Editor in order to use security labeling in Isode
products, but in many cases it may prove to be the simplest means of doing so.

15.1.1 Getting started

On launching the SPIF editor, a dialog will appear that provides options to create a new
SPIF, load an existing SPIF XML file or load one of the samples provided as part of its
installation.

Figure 15.1. SPIF Editor Launch Screen

SPIF Editor

219M-Vault Administration Guide

15.2 Creating New SPIF

A new SPIF can be created by choosing the "Create SPIF..." button on the launch dialog.
The option is also available on the SPIF → Create... menu. The wizard for creating a new
SPIF is shown in the figure below.

Provide the policy model, name and ID for the SPIF on the first page.

Figure 15.2. Create SPIF

On pressing Next button, list of standard classifications will be offered as a default.

SPIF Editor

220M-Vault Administration Guide

Figure 15.3. Create SPIF Classifications

The list can be modified to add or remove classifications. The name of the classifications
can be modified using Edit... button. The LACV value stands for the classification value
whereas the hierarchy governs the ordering of the classifications in the SPIF.

On pressing Finish, the SPIF will appear on the SPIF editor as shown below.

Figure 15.4. Created SPIF

SPIF Editor

221M-Vault Administration Guide

15.3 Managing Existing SPIF

An existing SPIF XML file can be loaded in a SPIF editor using the SPIF → Load... menu.

Once a SPIF has been created or loaded from an XML file, it can be viewed or edited using
the SPIF editor. The left hand side presents the classifications and categories of the SPIF
in a tree format. The classifications are listed on top of the tree followed by categories.

Classifications are displayed using their background color icon and categories are displayed
using green circle icons. Note that categories are optional and may not exist in most SPIFs.

On selecting a classification or a category, the right hand side pane will display the details
of selected classification or category.

When the selected classification or category is edited, the Confirm and Revert buttons
will get enabled to let you apply the current set of changes or cancel them. Note that the
Confirm button will not get enabled until the current set of changes made are complete
and valid.

Figure 15.5. Category Edit

The editor allows you to modify only one classification or category in one operation. For
complex policies, a change in more than one classification or category may be required to
create a valid policy. If an edit makes the policy invalid Revert to last valid policy will
get enabled to allow you to revert to last valid state to undo the changes that lead to the
invalid policy.

SPIF Editor

222M-Vault Administration Guide

15.4 SPIF Classifications

Select a classification on the left hand side side in order to edit it. After making the required
changes, click the Confirm button.

The following figure displays the SPIF after adding a marking code and changing the
background color of the classification.

Figure 15.6. Classification Edit

The General tab lists the most commonly used attributes. Rest of the tabs define advanced
parameters that are required for complex SPIFs.

15.4.1 Adding Classifications

Select the topmost tree item for the policy and click Add Classification button to add a
new classification. Provide the details of the new classification to be added on the right
hand side pane. The tabs that require mandatory parameters for completing classification
creation will display a red icon on the top.

SPIF Editor

223M-Vault Administration Guide

Figure 15.7. Add Classification

Once the details of the new classification have been provided, press the Confirm button
to create the new classification. By default, the editor will fill in default values and in
simple cases you will only need to provide the classification name. Colors and markings
can be added to suit the requirements.

15.4.2 Removing Classifications

Select a classification and click Remove button and confirm to remove the selected
classification from the policy. Errors will be reported if removal of a classification
invalidates the security policy.

15.5 SPIF Categories

15.5.1 Adding Category

In order to add a new category group, select the topmost tree item for the policy and click
Add Category button. A wizard to add a new category will be displayed.

SPIF Editor

224M-Vault Administration Guide

Figure 15.8. Adding Category

The wizard page will ask you to provide the details of the new category group and first
value in the group. For simple case, category name and type will have to be provided. See
the tooltips on the widgets for more information on the parameters.

On pressing the Finish button the editor will display the category to be added on the editor.
You can make further changes to the values for this category. Press Confirm button to add
the category to the SPIF.

SPIF Editor

225M-Vault Administration Guide

Figure 15.9. New Category

15.5.2 Adding Category Value

To add a new category value to an existing category group, select the category group and
click the Add Category Value button. The right hand side pane will change to a mode for
adding a new category. Provide the name of the category value and other details if required
and press the Confirm button. The new value will be added to the SPIF as shown below.

Figure 15.10. Adding Category Value

SPIF Editor

226M-Vault Administration Guide

15.5.3 Removing Category

Select the category value and click Remove button to confirm removal of the category
value. Similarly, select a category group and click Remove button to remove the selected
category group and all its values from the policy. Errors will be reported if removal of a
category invalidates the security policy.

15.5.4 Moving Categories

Select a category group or value and click on Move Up or Move Down button to move
it up or down the hierarchy. Press Confirm to apply the changes to the SPIF.

15.6 SPIF Utilities

The SPIF editor provides commonly used functions that are available via the Utilities
menu.

15.6.1 Generate Catalog

Security label and clearance catalogs are collections of security labels and clearances. Click
the Utilities → Generate Catalog... menu to launch a wizard to auto generate label and
clearance catalogs.

First select the type of catalog to be generated.

SPIF Editor

227M-Vault Administration Guide

Figure 15.11. Select Catalog Type

If the policy is simple with few classifications and categories (optional), the wizard will
generate a catalog with all possible combinations of classifications and categories. The
generated catalog will appear as shown in the figure below that displays a sample auto
generated label catalog.

SPIF Editor

228M-Vault Administration Guide

Figure 15.12. Label Catalog

However, for a policy which has large number of classifications and categories, the wizard
will present a page to choose a set of classifications and categories to be included in the
catalog.

SPIF Editor

229M-Vault Administration Guide

Figure 15.13. Selected Classifications and Categories

The wizard will attempt to generate a catalog from all possible combinations of selected
classifications and categories. A warning will be displayed on the bottom of wizard page
if the number of possible combinations is high (in terms of hundreds) and an error will be
displayed if the number of combinations is very high (in terms of thousands).

Once a label or clearance catalog has been generated, it can be edited if required on the
wizard page that displays the genererated list as shown in figure Figure 15.12, “Label
Catalog”. On pressing the Next button, the page will prompt you to select an XML file
location to save the catalog.

SPIF Editor

230M-Vault Administration Guide

Figure 15.14. Export Catalog

Press Finish to complete the catalog generation.

15.6.2 Converting Label Catalog to XEP-258 Format

The Utilities → Convert to XEP258 Catalog... can be used to convert a label catalog to
a format that conforms to the XEP 258 format of the XMPP standards.

Figure 15.15. Convert to XEP258 Catalog

15.6.3 Generate Label

For simple policies, select a classification and one or more categories to generate a label.

SPIF Editor

231M-Vault Administration Guide

Figure 15.16. Generate Label for Simple Policy

Label generation for complex policies is described below.

SPIF Editor

232M-Vault Administration Guide

Figure 15.17. Generate Label for Complex Policy

First select a classification from the drop-down list. Selecting a classification may or may
not require inclusion of certain categories. The required categories if any will be displayed
as a list in the Required Categories pane. The Optional Categories pane lists all the
categories in the configured policy from which the user can select certain categories to be
added to the label. The categories which are disallowed based on the selection of a certain
category or the classification will be disabled automatically on the editor. The obsolete
categories will be allowed for editing based on whether Edit obsolete elements is selected
or not.

Selection rules of a category group determine whether it allows selection of single or
multiple categories in the group. For single category selection, the categories are displayed
using radio buttons and for multiple category selection they are displayed as check-boxes.

SPIF Editor

233M-Vault Administration Guide

The markings get updated on the Markings tab when a valid combination of categories
has been selected.

Note: Rules for label editing are based on SDN.801c and are configured in the
security policy.

15.6.4 Generate Clearance

The Utilities → Generate Clearance... can be used to generate a security clearance using
the selected policy. The following wizard will be presented for clearance generation.

Figure 15.18. Generate Clearance

One or more classifications can be selected from the Security Classifications pane to be
added to the clearance. The Security Categories pane lists all the categories in the
configured policy from which the user can select certain categories to be added to the
clearance. The markings get updated on the Markings tab as and when the clearance is
edited.

15.6.5 Access Control Checks

SPIF editor can be used to verify a security label against a security clearance and vice
versa. To check access controls, select Utilities → Access control checks.... menu. A
dialog for performing these checks will be presented.

SPIF Editor

234M-Vault Administration Guide

Figure 15.19. Access Control Checks

Select Label Checker to check access control of a label against a clearance or a catalog
of clearances. Select Clearance Checker to check access control of a clearance against
a label or a catalog of labels.

The label can be selected from an XML file by browsing the file system using the Browse
button or picked up from a label calaog using the Pick... button. The Pick... button will
offer the labels in the catalog in the form of a dropdown list as shown below.

Figure 15.20. Pick Label from Catalog

The label can be checked against a clearance or a clearance catalog that can be selected
from the file system using the Browse button.

SPIF Editor

235M-Vault Administration Guide

Once a label and clearance/catalog has been selected, the result of access control checks
will be displayed in the bottom pane.

Figure 15.21. Access Control Check of Label with Clearance Catalog

SPIF Editor

236M-Vault Administration Guide

Figure 15.22. Access Control Check of Label - Acess Granted

SPIF Editor

237M-Vault Administration Guide

Figure 15.23. Access Control Check of Label - Access Denied

Follow the above steps in a similar way to check a clearance against a label or a catalog
of labels by selecting the Clearance Checker tab.

SPIF Editor

238M-Vault Administration Guide

Appendix A Introduction to Directories
This appendix provides a background to X.500 and LDAP Directories. It provides a context
for Isode’s implementation of the Directory, and should be read by anyone not familiar
with the X.500 standard or who wants to understand how Isode has implemented it.

A.1 Definition of the Directory

The Directory described in this manual is in line with that of the LDAP and X.500 standards.
Detailed references to the individual standards are given in Appendix I, References.

Providing an Enterprise Directory using open systems standards enables a wide range of
enterprise applications to plug into a common Directory core.

A Directory is a special purpose database. The essential features which make it a Directory
are:

• It can be very large and highly distributed, in most cases on an organizational basis, over
a number of Directory Servers. This distribution is largely transparent to Directory users.
Answers to queries are independent of the location of the user agent making the query
and of the Directory Server holding the data.

• It contains information about objects of interest within the enterprise (for example, people
or pieces of equipment). Each entry in the Directory represents a single object. There is
a fixed structure for well-known object types and for the information associated with
those objects. This structure is highly extensible.

• It is hierarchically structured, the entries being arranged in the form of a Directory
Information Tree (DIT), as described later. Objects are named within the hierarchy and
globally, ensuring that all objects have unique Directory names. This global naming may
not be visible within the enterprise (the global prefix may be hidden), but it is important
as it facilitates inter-working between enterprises.

• It supports read operations, full facilities to modify and update data, and search operations
optimized to follow the hierarchy of information. Read and search operations are more
common than modification and are very fast.

• Data can be replicated across a collection of distributed Directory Servers. The temporary
inconsistency between data held on one server and that on another is highly manageable.

• It is possible for one Directory Server to pass on a request to another server or to refer
the request back to the originator, if required.

• There is security functionality to provide access control to the information in the Directory
and to authenticate those requesting that information.

A.2 Directory user information

The Directory contains a database of information on objects:

• People

• Organizations

Introduction to Directories

239M-Vault Administration Guide

• Application processes

• Devices, etc.

The information comprises various types of names and addresses for the objects. The
information about objects stored in a Directory is known as the Directory Information Base
(DIB). An object in the real world is represented by an entry in the DIB (the object entry).

The information can be updated, searched, processed and eventually delivered to the
requesting client or user. In order to support these types of operations uniformly, the
information in the Directory must be uniquely categorized and identified since the Directory
could be a repository for information derived from a large number of sources.

Because this information in the DIB is available to the normal users of the Directory (human
or computer application), it is often termed user information. The user information is usually
under the control of a Data Manager.

As we shall see later, there is also another type of information in the Directory which is
used to control the user information. This is called operational information and is described
in Section A.3, “Operational information”. This operational information is not available
to the normal user, but only to the Directory Management System, and is usually under the
control of a Server Manager.

A.2.1 Directory information tree

The standards impose a hierarchical structure on the information. This hierarchy is called
the Directory Information Tree (DIT), and is illustrated in Figure A.1, “Example Directory
Information Tree Structure”.

The hierarchical structure of a Directory leads to a situation where most of the useful
information from the perspective of a user is found at the lower levels, while the top levels
hold information which facilitates unique naming and navigation across the hierarchy. This
structure enables the information held in an enterprise-wide or even global Directory Service
to be partitioned. It allows separate administrative domains a high degree of autonomy to
manage their own Directory structures and the information within them, while
simultaneously remaining connected to a wider Directory system.

In a global Directory, the top level is organized along geopolitical boundaries and then
around organizational or institutional boundaries at subsequent layers. Figure A.1, “Example
Directory Information Tree Structure” illustrates how entries at the top are typically used
to represent countries (for example, c=US is used to represent the United States of America)
and entries within countries are represented by organizations (for example, o=Acme Limited
is used to represent a hypothetical organization of that name). Intermediate levels are
commonly used to represent the intra-organizational structure that facilitates the conceptual
understanding and administration of information held lower down (for example,
ou=Research is used to represent an organizational unit, or department, called Research).
The information held at the bottom usually represents a person (for example, Pat Smith),
but may also represent a piece of office equipment such as a fax machine, a PC, or
application process such as a print server. In this example, these lowest entries are identified
by their common name (cn=Pat Smith).

Introduction to Directories

240M-Vault Administration Guide

Figure A.1. Example Directory Information Tree Structure

ou=Engineering ou=Research

cn=Barry Jones cn=Pat Smithcn=Hugh Beasley

o=Ecme Corp o=Ocme Corp

c=GBc=US

o=Acme Limited

ou=Sales

ROOT

Within the hierarchy of the DIT, an entry can be a node entry (),with other entries

below it in the structure, or a leaf entry (),without. The top of the hierarchy is called
the root. The root itself is not an object; it does not have an entry.

Although most entries in the DIT are object entries, some leaf entries are known as alias
entries. They point to other object entries (leaf or not) and provide the mechanism for the
alternative naming of objects.

There are also special node entries called glue entries. These are not object entries. They
are simply placeholder entries in the DIT, showing the structure.

A.2.2 Entries and attributes

An entry is made up of a set of attributes, each concerned with some aspect of the object.
The attribute type classifies the aspect, and the attribute values describe that aspect. For
example, an entry for an organization could contain attribute types giving values for the
postal address, telephone number, fax number, business category, and so on. It would also
have to contain an attribute defining the entry as an organization (see Section A.2.3, “Object
classes and the schema”) and an attribute naming the organization (see Section A.2.4,
“Naming objects”).

Within the standards, some attribute types are allowed only single values; others can have
several values. Attribute values have a defined syntax, which determines how values are
represented, and what range of values and matching rules are applicable to the attribute
type. Attribute syntax is described in detail in Appendix C, Attribute Syntaxes.

A.2.3 Object classes and the schema

Objects are classified within the DIB. An object class has certain attribute types associated
with it. There are two sets of attribute types for the object class: its mandatory set and its
optional set. The object class attribute must be present in each entry. The object class is
sometimes referred to as the entry type. Thus, in an entry with an object class of
organization, the mandatory set of attributes includes the organizationName, and the
optional set includes postalAddress amongst other useful attributes.

The most important type of object class is the structural object class. This imposes the
hierarchical structure on the data. For a list of structural object classes, together with their

Introduction to Directories

241M-Vault Administration Guide

naming attribute and other mandatory attribute types, plus other optional attributes, see
Section A.3.2, “Distribution of the Directory”.

The following rules are contained in the Directory schema:

• Constraints on the hierarchical structure of the DIT, that is, permitted hierarchical
relationships between object classes.

• For each object class, a specification of which attributes are mandatory and which are
optional.

• The characteristics and syntax of each attribute.

A.2.4 Naming objects

Each entry must also have at least one naming attribute. The collection of these attributes
in the entry form the Relative Distinguished Name (RDN).

The first goal of naming is to uniquely identify entries. Once this is achieved, the next
major goal when naming entries is to facilitate querying of the Directory. For White Pages
applications in particular, a naming structure that supports searching and identification of
entries (user friendly naming, as defined in RFC 1781) is desirable. Other considerations,
such as accurately reflecting the organizational structure of an organization, should be
disregarded if this has an adverse effect on normal querying.

An RDN is usually represented by a single naming attribute with a single value. It is
commonly represented as an abbreviated form of the attribute type and the value, separated
by an equals sign. These are both valid RDNs:

cn=Barry Jones

o=Acme Ltd

Within the Directory, objects are uniquely identified by a Distinguished Name (DN). The
Distinguished Name (DN) of the object is constructed by concatenating the Relative
Distinguished Names (RDNs) of all the entries in the DIT at and above the entry, up to the
root. The Distinguished Name thus shows the position of the entry in the DIT as well as
identifying the object.

For example, the DN of the entry in the lower left corner of Figure A.1, “Example Directory
Information Tree Structure” is:

cn=Hugh Beasley, ou=Sales, o=Acme Corporation, c=US

That is, this Hugh Beasley is uniquely identified as being the Hugh Beasley in the Sales
Department of Acme Corporation.

A.2.4.1 Choice of names

If you want your Directory to form part of an overall Directory structure, you have to make
sure that the names you use are of the correct format for that structure. This means:

• If you are adding an organization to the DIT in a country that has established guidelines,
you should follow them. These guidelines might be based on an established registration
authority, or may make use of an existing registration mechanism (for example, company
name registration).

• If you are adding an organization to the DIT in a country that does not have any
established guidelines or existing national registration, you should choose a name that
is meaningful. This will typically be the full, well-known name of the organization.

The name must uniquely identify the organization and be one that is unlikely to be
challenged in an open registration process. For example, if the organization has a name

Introduction to Directories

242M-Vault Administration Guide

that is registered in an existing registry (such as company name registration), this name
is likely to be appropriate for use in the Directory.

For example, O=UCL would not be a good choice of RDN for University College London,
as it might well be challenged by United Carriers Ltd.

If your Directory is self-contained, you do not need to consider the national guidelines as
you will not be attempting to integrate into an existing structure. You can start your Directory
from the o=MyOrganization level.

You should use culturally meaningful names if you expect users to browse the Directory
looking for an entry. For example, someone is much likely to recognize that cn=John
Jackson is the entry required rather than uid=jaj1234. For the same reason, although
abbreviated names may have an obvious meaning to one person, they can have a completely
different meaning to someone else, even within the same organization. In many countries
the best choice will be in the form of familiar-first-name and surname. Many organizations
use the first and last name, with the option of a middle initial to distinguish between two
persons with the same first and last names. Pragmatic choices will have to be made for
other cultures.

The common name attribute should not be used to hold other attribute information such as
telephone numbers, room numbers, or local codes.

If there are large numbers of entries located at a single level of the DIT, it may be necessary
to adopt a more complicated naming scheme to guarantee uniqueness of the RDNs, as there
may be two employees called “John Smith” who must have distinct entries. This can be
solved using multi-component RDNs: the standard X.521 recommends that an
organizationalUnitName attribute can also be used as a naming attribute to differentiate
entries, and the personalTitle or userId attributes could also be used in the RDN. Both of
these are needed to identify this person’s entry. The RDN must distinguish the entry from
all other entries with the same parent entry. For example combining common name and
department distinguishes the two following entries:

cn=John Smith+ou=Sales

cn=John Smith+ou=Finance

The use of multi-component RDNs enables you to avoid artificial naming values such as
“John Z Smith” or “John Smith-2”.

For organization, organizationalUnit, and person entries, extra naming information can
be stored in the Directory as alternative values of the naming attribute. For example, if an
organization is called Multi-National Network, MNN could be stored as an alternative
organizationName attribute value.

A.2.4.2 Aliases

Aliases are used used to point to another entry in the DIT. Aliases should only be used
when you need to reference an entry in two separate naming contexts. If a person splits his
or her work between two departments within an organization, for example, you may want
to have two Directory entries for that person, assuming that your Directory entries were
organized by department. One of these would correspond to the person’s “real” entry, and
the other would be an alias that references that entry, and would enable that person to be
found whichever department you expected to find him or her within.

Aliasing can also be used to reference an entry outside the scope of a single organization.
For example, cn=A N Other, o=Ownworkshop, c=GB could be an alias to cn=Andrew
Other, ou=Engineering, o=Acme Limited, c=GB.

Introduction to Directories

243M-Vault Administration Guide

A.3 Operational information

Operational information is held in a Directory to govern access to the user information
described above. It comprises:

• Rules on how the user information is to be administered.

• Details of the distribution of user information over the network.

The same concepts apply to operational information as to user information, that is, object
classes and attribute types are used to classify the information.

Operational information can be found in two places in the DIT:

• As additional attributes (operational attributes) within entries which also carry user
information.

• As additional entries, created especially for the purpose of carrying operational
information.

The set of rules governing the operational information is called the system schema.

A.3.1 Administration of the Directory

The way a Directory is administered and operated may be different in different areas of
the Directory.

A DIT domain is that subset of the DIT held within a particular Directory Management
Domain (DMD). A DIT domain is composed of one or more subtrees of the DIT, each of
which is termed an Autonomous Administrative Area (AAA). The top of the subtree within
one Autonomous Administrative Area is called the Autonomous Administrative Point
(AAP).

Each entry can be located in only one Autonomous Administrative Area, and all entries in
an AAA are controlled by the same administrative authority. As shown in Figure A.2,
“Administrative areas”, an AAA includes its Autonomous Administrative Point and all
other entries below it, down to the leaves of the DIT or another AAP.

The Autonomous Administrative Point is used to define:

• access control administration for the area, see Section A.3.1.2, “Security”.

• attributes which are common to all entries within the area, that is, collective attributes.

These definitions are held in subentries beneath the Administrative Point.

A.3.1.1 Administrative points

An administrative point is a location in the Directory tree at the top of an area with its own
access controls and collective attributes. There are three types of administrative point: an
autonomous administrative point, a specific administrative point and an inner administrative
point.

• An autonomous administrative point heads an autonomous administration area and
contains the schema, access and collective attributes all the way down to the leaf entries,
excluding any subtree with its own autonomous point. There can only be one autonomous
administration point for a section of the tree.

Introduction to Directories

244M-Vault Administration Guide

• A specific administrative point enables you to define different security access or collective
attributes for an area. Specific administrative areas cannot be nested inside other
administrative areas but can themselves contain inner administrative areas.

• An inner administration point heads an area within an autonomous area, which can refine
the access and collective attribute information. It extends down to lowest entries of the
autonomous point that contains it. Inner administrative areas can be nested one inside
another.

The difference between the types is shown in Figure A.2, “Administrative areas”:.

• Two autonomous administrative areas, with ‘A’ and ‘B’ as the administrative points at
their apexes. None of the administrative properties of the area managed by ‘A’ are passed
to the area managed by ‘B’.

• A specific administrative area, with ‘C' as its administrative point. This area will use the
schema defined by ‘A’, but may have completely different collective attribute details or
access policies. For example, if this subtree reflected a physical location (an overseas
office, perhaps) then some of the contact information held in collective attributes (such
as the company telephone number) may be different. Alternatively, this subtree may
reflect a department within the organization that requires either relaxed or enhanced
security clearance, different from that set for the organization as a whole.

• Two inner administrative areas, headed by ‘D’ and ‘E’. These areas take the schema,
collective attribute and security information from the containing administrative area and
add to it. For example, some people may be given administrative roles within an inner
area enabling them to modify entries; these same people will retain the access levels
granted at the higher level for the rest of the Directory entries.

Figure A.2. Administrative areas

Autonomous Area A

Autonomous Area BSpecific Area C
Inner Area D

Inner Area E

A.3.1.2 Security

There are three aspects of security provided by the Directory Service:

• authentication

• access control, and

• confidentiality.

A.3.1.2.1 Authentication

The steps taken by parties in an interaction to verify each others identity is called
authentication.

Introduction to Directories

245M-Vault Administration Guide

Most applications where parties are connected by communications networks require some
form of authentication. Usually, the requester of a service initiates the connection and
presents a user identity and password (credentials) to the service provider. Access is only
granted if the credentials are those agreed in advance with the service provider.

The purpose of authentication in a Directory is to support Access Control (see below).

Several different types of credentials may be used to establish identity, details of which
are given in Section 5.2.1, “Establishing identity”, but may be summarised as follows:

• no authentication, where no credentials are presented.

• simple authentication, where the Distinguished Name (DN) and a password are used.
The DN given must correspond to the name of an entry in the Directory.

• SASL authentication, which uses userids instead of DNs, and supports various
mechanisms which can avoid passing credentials over the network in the clear.

• strong authentication, where a digitally signed token is used.

Each is useful in certain circumstances.

A.3.1.2.2 Access control

Access control is a security service aimed at preventing unauthorized access to a capability.

Once an identity has been established (authenticated), the access control system determines
what data and operations can be accessed by that identity. It is also possible to require that
certain operations are digitally signed.

The purpose of access control is to protect entries, attributes and their values against
unauthorized disclosure or modification. Access control regulates what type of operation
can be performed on an entry and on an attribute or value.

More information on access control is given in Chapter 6, Controlling Access.

A.3.2 Distribution of the Directory

A Directory can be distributed widely over many computer systems, linked together in a
network. The user information held on these systems can be shared or duplicated in a
flexible way, while also ensuring that the required security of access is maintained.

A.3.2.1 Directory Servers

A Directory can be composed of many Directory Servers containing copies of the application
used to maintain and provide access to the Directory and defined parts of the DIT. In
practice, this usually means that each Directory Server Application (DSA) is held on a
separate machine in the network. Directory Server applications provide the mechanisms
for access control, data management and system management.

A.3.2.1.1 The naming context

The DIT can be made up of a number of subtrees which do not overlap, each of which is
provided by a different Directory Server. Each such subtree of the DIT is called a naming
context. A single Directory Server may provide one or more naming contexts, as illustrated
in Figure A.3, “Example of Naming Contexts”.

A basic principle is that each entry in the DIT is mastered by a single Directory Server,
which is the only Directory Server where that entry may be modified.

Introduction to Directories

246M-Vault Administration Guide

Figure A.3. Example of Naming Contexts

DS4

DS2

c=WW

o=MNNo=MNN

ROOT

DS3

o=Trader

DS1

c=US

The administrator setting up a Directory Server defines its (initial) naming context(s) by
specifying:

• The Distinguished Name of the entry in the DIT at the top of the naming context to be
mastered, that is, the context prefix.

• If the naming context is not immediately below the root of the DIT, a reference to a DSA
holding a naming context which is superior to this one, that is, a superior reference.

• References to any naming contexts below this one in the DIT of which this Directory
Server should be aware, that is, subordinate references.

Note: In the M-Vault Server, a Directory Server’s naming context may be split
into several subordinate naming contexts. This is a relaxation of the standards,
which state that for every naming context the superior naming context consists
of entries mastered in a different Directory Server.

A naming context is not necessarily an administrative area (see Section A.3.1,
“Administration of the Directory”). An administration may split the area among multiple
adjoining naming contexts.

A.3.2.1.2 Subschema

Each Directory Server contains information to regulate the entries held by that Directory
Server. This is called its subschema.

Subschema information comprises:

• Constraints on the hierarchical structure of the DIT, that is, permitted hierarchical
relationships between object classes.

• For each object class, a specification of which attributes are mandatory and which are
optional.

• The characteristics of each attribute in terms of attribute syntax and other operational
attributes.

Thus, the subschema defines the shape of the DIT tree held by the Directory Server, what
should be held in each entry and in what form it should be held.

Introduction to Directories

247M-Vault Administration Guide

A.3.3 Directory User Agent (DUA)

A Directory User Agent (DUA) is a client application used to connect to a Directory Server.
The DUA provides the ability to issue operations to the Directory and process the results
obtained.

The standards define only the protocol and service requirements of a DUA and do not
define the “look-and-feel” of a DUA client. Thus, DUA client applications come in many
varieties, though all follow the same basic mechanisms for accessing the Directory and
have the same internal model for how information in the Directory is represented in terms
of names, object classes, entries and attributes, as previously discussed.

A DUA communicates with the Directory using an access protocol. This can be:

• Lightweight Directory Access Protocol (LDAP),

• X.500 Directory Access Protocol (DAP).

The access protocol implements the Directory Abstract Service which provides the
operations to access and update the Directory. Access operations include the ability to read
an entry, list all entries subordinate to another entry, and search for entries based on
user-specified search filters. Update operations include the ability to add an entry or
attributes, remove an entry or attributes, and modify an entry or attributes.

A.3.3.1 Interactions between Directories and DUAs

The Directory Server can respond to requests from a DUA (over DAP or LDAP) or another
Directory Server in one of the following ways, as shown in Figure A.4, “Interactions
between Directory Servers and a DUA”:

• If the Directory Server holds the information to satisfy the request, then that information
is returned to the DUA.

• If the Directory Server does not hold the information, or has only part of the information,
it can be configured to obtain the information from another Directory Server. This process
is called chaining.

• Alternatively, if the Directory Server does not hold the information, it can be configured
to return a referral to the DUA, which can then contact the referred alternative Directory
Server for the information.

The configuration for chaining or referral can be set up for each Directory Server and as
part of the service controls in the DUA. It is configured separately for requests passed over
DAP and over LDAP.

Note: Only operations which read data, not modify it, can be chained over LDAP.
The chaining is carried out with no authentication; see Section A.3.1.2, “Security”.

The communication between Directory Servers is via the Directory Server Abstract Service
and uses the Directory System Protocol (DSP); this protocol is used for inter-Directory
Server communication unless the information is shadowed (see Section A.3.4, “Shadowing”.

If interaction between Directory Servers is required, each Directory Server needs operational
information (knowledge) about the other Directory Server(s).

Introduction to Directories

248M-Vault Administration Guide

Figure A.4. Interactions between Directory Servers and a DUA

The Directory
DS3

DS1

DS2

1) LDAP/DAP request

2) DSP
request

3) DSP response

4) result, error, or
referral

5) referred LDAP/DAP
request

6) result, error, or
referral

(and so on...)

DUA

A.3.4 Shadowing

To minimise access times for Directory information, it may be necessary to ensure that the
information is near the users who need it by means of replication. Replication means that
several Directory Servers hold a copy of the same information.

Replication of information in the Directory is called shadowing. One Directory Server
establishes a shadowing agreement with another, whereby the shadow supplier contracts
to provide the shadow consumer with a copy of some part of the DIT. A single Directory
Server may act in the role of a shadow supplier, a shadow consumer, or both, depending
on the shadowing agreements between it and other Directory Servers.

Thus, many copies of a part of the DIT (a naming context or part of it) may be provided
by a number of different Directory Servers. However, only one is considered to be the
master copy. When the information changes, it is the master copy which is updated, and
then the changes are propagated to the shadow copies, following the rules laid down in the
various shadowing agreements.

Depending on the shadowing agreement, a Directory Server in a shadow consumer role
may request an update from a shadow supplier Directory Server, and/or the shadow supplier
may initiate the update. The update can take place at a defined frequency or on demand,
and the actual update can be either incremental or total. An incremental update includes
only those modifications since the last update. In both cases, a timestamp uniquely identifies
the update transaction.

The protocol used for replication is the Directory Information Shadowing Protocol (DISP).

A.3.5 Directory Server information model

Each Directory Server must maintain an internal model of the information it holds, so that
it can represent and manage its portion of the DIT. This internal model is primarily of
interest to Directory Server administrators who will configure a Directory Server and
populate its database with information.

A Directory Server requires information about how the DIT is organized. This is held in
the form of Directory Server operational attributes, which comprise:

• Directory operational attributes, used to operate the Directory Server.

• Directory Server shared attributes, such as knowledge references, used by a Directory
Server to contact other Directory Servers.

• Directory Server specific attributes which represent how the DIT is configured for that
particular Directory Server.

Introduction to Directories

249M-Vault Administration Guide

A.3.5.1 Directory operational attributes

Directory operational attributes apply to the whole Directory and are mainly used to
implement the Administrative Model, as described in Section A.3.1, “Administration of
the Directory”. They include collective attribute, authentication and access control
information and also the Access Point for this Directory Server.

A.3.5.1.1 Access point

An Access Point uniquely identifies a Directory Server. The Access Point consists of the
Distinguished Name (DN) of the Directory Server, which defines its location in the DIT,
and its Presentation Address (PA), which defines its location on the network.

Note: The Presentation Address is mandatory for Access Points in the M-Vault
Server.

A.3.5.2 Directory Server shared attributes

Directory Servers need a way of progressing operations which reference entries outside
their naming context(s). Knowledge References are used for this purpose.

• A subordinate reference is the access point of the Directory Server which masters a
naming context directly subordinate to the naming context of this Directory Server.

• A cross reference is the access point of the Directory Server mastering a naming context
which is not directly subordinate to the one mastered by this Directory Server.

• A supplier reference is held by a shadow consumer Directory Server. It contains the
access point of the supplying Directory Server and, optionally, the access point of the
master Directory Server, if the updates are not supplied by the master.

• A superior reference is required for all Directory Servers which do not provide a first
level naming context. It is the access point of the Directory Server to contact if there is
no other suitable reference to progress the operation.

A.3.5.3 Directory Server’s information tree

A Directory Server’s Information Tree (DsaIT) contains all the names in the DIT known
to that Directory Server.

If a single Directory Server were providing the whole Directory, all entries would be in its
Information Tree. Typically, however, the individual Directory Server’s Information Tree
is a very restricted subset of the total DIT.

If a Directory Server does not master any entries that are immediate subordinates of the
root, then it needs a reference to the Directory Server that holds a superior naming context
(see Section A.3.2.1, “Directory Servers”). The Directory Server that masters a superior
naming context will be able to chain or refer any requests toward a first level Directory
Server. A first level Directory Server is one which holds knowledge of all naming contexts
that are immediate subordinates of the root.

At each name in the Directory Server’s Information Tree, the Directory Server holds a
private internal object, the Directory Server Specific Entry (DSE), which holds the attributes
specific to the entry. Directory Server shared and Directory Server specific attributes are
kept separate from Directory operational attributes and the user information.

Introduction to Directories

250M-Vault Administration Guide

A.4 Functionality of M-Vault

The functionality offered by the M-Vault Server includes:

• Support of the Directory Access Protocol (DAP) as defined in the X.500 (2008) standard.

• Support of the LDAPv3 protocol defined by RFC 4511.

• Support of the Directory System Protocol (DSP) as defined in the X.500 (2008) standard,
including chaining.

• Schema support of all attribute types and object classes as defined in X.520 (2008) and
X.521 (2008) as well as those defined in RFC 4519 and RFC 4524.

• Support of the bind operation using no authentication, simple authentication and strong
authentication for DAP, DSP and DISP as defined in the 2008 standards.

• Support for signed DAP, DSP and DISP operations.

• Support of the SASL authentication framework as defined in RFC 4422 for use with
LDAP as defined in RFC 4513.

• Support of a subset of X.500 (2008) defined Basic Access Control.

• Replication using X.500 (2008) DISP including support for incremental and full shadow
updates, supplier and consumer initiated, scheduled and on-change updates, attribute
filtering and chop shadowing.

• Provision of the Directory Abstract Service in a distributed environment as defined in
X.518 (2008), including support of chaining and referral modes of operation, superior
references, and subordinate references.

• Configuration of the Directory Server using standard knowledge references.

• Indexing and database tools for the management of on-disk databases.

• Audit logging.

Detailed references to the individual standards are given in Appendix I, References.

A.4.1 Isode’s interpretation of the standards

Although the M-Vault Server supports the standards as listed above, there are some methods
of interpretation which are worth mentioning. These are detailed in the sections below.

A.4.1.1 Storage of and access to entries

The X.500 (2008) specifications require that Directory Servers have some means of
accessing the attributes of Directory Server Specific Entries (DSEs), and that overlapping
information shadowed by two different sources is kept distinct.

The M-Vault Server architecture contains a two-part solution to the problem of entry storage
and access:

• Ordinary (user information) entries are stored on disk in one or more databases.

• Directory Server specific attributes are held in memory as an internal Directory Server
knowledge information tree. The in-memory database is termed the Directory Server
Information Tree.

The M-Vault Server relies on this Directory Server Information Tree for efficient name
resolution, pre-filtering, access control checks, and operation progressing.

Introduction to Directories

251M-Vault Administration Guide

The M-Vault Server is a single multi-threaded process on all supported platforms. On
Windows systems it runs as a Windows Service. On Unix systems it runs as a system
daemon.

A.4.1.2 Operating system support

The M-Vault Server is a single multi-threaded process on all supported platforms. On
Windows systems it runs as a Windows Service. On Unix systems it runs as a system
daemon.

A.4.1.3 Replication

The M-Vault Server implements both the supplier and consumer sides of the Directory
Information Shadowing Protocol (DISP), which allows the replication of a naming context
from one Directory Server to another.

The Shadow Update Scheduler module transmits shadow updates of GDAM-held naming
contexts at manager-configurable intervals, either when an entry in the context has been
modified, at specific times, or when forced by the Directory Service Manager. The shadow
update can be either a total update which contains every entry in the naming context, or an
incremental update which includes only those entries which have changed since the last
update.

The database GDAM includes a change logging mechanism, so that changes to that GDAM
can be found and transmitted efficiently.

A.4.1.4 The use of Autonomous Administrative Areas

The X.500 standards state the following restriction:

An Autonomous Administrative Area (AAA) controlled by an authority
cannot be immediately subordinate to another AAA controlled by the
same authority.

However, this restriction has been relaxed in the M-Vault Server to enable the shadowing
of part(s) of a naming context. The parts to be shadowed are defined as AAAs, which means
that, in the case of the M-Vault Server, an AAA can be immediately subordinate to another
controlled by the same authority. It is assumed that a naming context is an access control
and a collective attribute area.

A.4.1.5 The use of Superior Naming Contexts

The X.500 standards state:

For every naming context the superior naming context consists of entries
mastered in a different Directory Server.

In the M-Vault Server, a naming context may be split into several subordinate naming
contexts to allow for the shadowing of part(s) of the naming context. Thus, the superior
naming context may consist of entries mastered in the same Directory Server.

Introduction to Directories

252M-Vault Administration Guide

Appendix B Attributes
This appendix provides details of the attributes associated with some of the common object
classes, indicating which are mandatory and which are optional.

B.1 Sample attributes of object classes

This section contains extracts of sample entries which illustrate the points made in the text,
using the LDIF format.

Attribute type keywords do not have to follow the mixed-case conventions shown in the
examples because keywords map, ignoring case, onto the numeric object identifiers used
internally. The case of attribute values will be preserved as entered initially, but can usually
be matched case-independently. It is not possible to modify the case of an attribute value
by DAP without removing the old value and reinstating the modified value.

The remainder of this section gives examples of entries for organizations, persons, and
other White Pages objects.

Note: All object classes have a mandatory attribute objectClass that specifies
what type of object it is. This is in addition to the specified mandatory attributes
listed below.

B.1.1 Country

Objects of this class represent a geographic entity.

• There is one mandatory attribute: countryName, which gives the name of the country.

The value of this attribute is a printable string exactly two characters long; for example:

c: US

This attribute is single-valued, and the value is restricted to be an ISO 3166 country
code.

• The friendlyCountry subclass of country used in RFC 4524 adds a mandatory attribute,
friendlyCountryName, which gives the name of the country in a human-readable form.
The value of this attribute is a string, for example,

friendlyCountryName: The United States of America

This attribute is multi-valued. It would not be used as the naming attribute, but is helpful
when displaying a country entry.

• Optional attributes include description and searchGuide.

B.1.2 Organization

Objects of this class represent a top-level organizational entity, such as a corporation,
university, government entity, and so on.

Attributes

253M-Vault Administration Guide

• There is one mandatory attribute, organizationName, which gives the name of the
organization and is multi-valued. The value of this attribute is a string, for example:

o: Multi-National Network

• There are a number of optional attributes for holding contact and similar information:
description, localityName, stateOrProvinceName, streetAddress,
physicalDeliveryOfficeName, postalAddress, postalCode, postOfficeBox,
facsimileTelephoneNumber, internationalISDNNumber, telephoneNumber,
teletexTerminalIdentifier, telexNumber, preferredDeliveryMethod,
destinationIndicator, registeredAddress, businessCategory, seeAlso, searchGuide,
userPassword

An example of an organization entry is:

dn: o=Multi-National Network
objectClass: organization
objectClass: top
o: Multi-National Network
o: MNN
telephoneNumber: +44 20 8783 2964
businessCategory: Telecommunications
l: Great Britain
l: Canada
l: United States

B.1.3 Organizational unit

The organizationalUnit object class is used to represent a unit within an organization.

• There is one mandatory attribute, organizationalUnitName, which gives the name of
the organizational unit. The value of this attribute is a string, for example:

ou: Research and Development

• Many of the optional attributes are the same as those for organization.

An example of an organizational unit entry would be:

dn: ou=Marketing,o=Multi-National Network
objectClass: organizationalUnit
objectClass: top
ou: Marketing
businessCategory: Marketing
l: Second Floor
st: Surrey

B.1.4 Person

This is a base object class used to represent a person.

• There are two mandatory attributes:

• commonName, which gives a (potentially ambiguous) name for the person. The value
of this attribute is a string usually containing the person’s first and last names, for
example, Steve Kille This attribute is usually multivalued, containing variations on
the first, middle, and last names, for example, Stephen E. Kille Steve E. Kille Stephen
Kille

Attributes

254M-Vault Administration Guide

• surname, which gives the person’s last name. In cultures that do not have a distinct
surname the common name used in the RDN could also be placed as a value in this
attribute.

B.1.4.1 Organizational person and inetOrgPerson

These are auxiliary classes of the person object class.

• organizationalPerson introduces the following optional attributes:

preferredDeliveryMethod, destinationIndicator, registeredAddress,
internationalISDNNumber, x121Address, facsimileTelephoneNumber,
teletexTerminalIdentifier, telexNumber, physicalDeliveryOfficeName, postOfficeBox,
postalCode, postalAddress, title, organizationalUnitName, streetAddress,
stateOrProvinceName, locality

• inetOrgPerson adds the following optional attributes to those found in
organizationalPerson:

audio, businessCategory, carLicense, departmentNumber, displayName,
employeeNumber, employeeType, givenName, homePhone, homePostalAddress,
initials, jpegPhoto, labeledURI, mail, manager, mobile, organizationName, pager,
photo, roomNumber, secretary, uid, userCertificate, x500UniqueIdentifier,
preferredLanguage, userSMIMECertificate, userPKCS12

An example person entry would be:

dn: cn=Bill Smith,ou=Marketing,o=Multi-National Network
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person
objectClass: top
cn: Bill Smith
cn: William Smith
mail: B.Smith@research.mnn.com
roomNumber: 123
sn: Smith
telephoneNumber: +44 20 8783 2964
title: Manager

B.1.5 Organizational Role

Entries of this class are used to represent a position or role within an organization.

• There is one mandatory attribute, commonName, which gives the name of the role. The
value of this attribute is a string, for example:

cn: postmaster

• There are many optional attributes including roleOccupant (the distinguished name of
the person who fulfils the role), for example:

roleOccupant: cn=Bill Smith,ou=Research,o=Multi-National Network

The other optional attributes are: seeAlso, preferredDeliveryMethod,
destinationIndicator, registeredAddress, internationalISDNNumber, x121Address,
facsimileTelephoneNumber, teletexTerminalIdentifier, telexNumber,
telephoneNumber, locality, postOfficeBox, postalCode, postalAddress, description,
organizationalUnitName, streetAddress, stateOrProvinceName,
physicalDeliveryOfficeName

Attributes

255M-Vault Administration Guide

For example:

dn: cn=Secretary,ou=Marketing,o=Multi-National Network
objectClass: organizationalRole
objectClass: top
cn: Secretary
roleOccupant: sn=Jones,o=Multi-National Network
telephoneNumber: +44 20 8783 2964

It is important to remember the distinction between aliases and roles when selecting the
attributes of an organizationalRole entry. For example if the role was departmental fire
safety representative, it would be likely to be filled by a succession of different individuals
with different phone numbers. In this case, phone number should not be an attribute of the
role entry.

B.1.6 Group of Names

Entries of the object class groupOfNames define a set of names.

There are two mandatory attributes:

• commonName, which is the name of the group

• member, which is multi-valued and identifies members of the group – it must contain
at least one value

For example:

dn: cn=Managers,ou=Marketing,o=Multi-National Network
objectClass: groupOfNames
objectClass: top
cn: Managers
member: cn=Bill Smith,ou=North,o=Multi-National Network
member: cn=John Bailey,ou=West,o=Multi-National Network

B.1.7 Alias

Objects of this class represent an alias to some other entry in the DIT. It is generally used
when an entity belongs in more than one subtree of the DIT, and is used to “point” one
entry to the other.

There is one mandatory attribute, aliasedObjectName, which is a pointer to another object
in the Directory. For example:

aliasedObjectName: cn=Bill Smith,ou=Marketing,o=Multi-Nation
 al Network

Note: An aliased object must include the attribute, or attributes, used in the
Relative Distinguished Name. This attribute should usually also be present in the
aliased object.

B.1.8 Domain related object

If an object has some relationship to the Internet Domain Name System (DNS), then this
can be represented in the DIT using this auxiliary object class, which would normally be
added only to organization or applicationProcess entries.

This class has one mandatory attribute, associatedDomain, which identifies the domain
which corresponds to this object. The value is a domain string, for example:

Attributes

256M-Vault Administration Guide

associatedDomain: mnn.com

B.1.9 LabeledURI object

This auxiliary object class has no mandatory attributes, but it has two optional attributes:

• labeledURI, which is used to hold a Uniform Resource Identifier (see RFC 3986) together
with an associated text label, for example:

labeledURI: http://www.mnn.com/ Multi-National Network Limit
 ed home page

• labeledURL, which is used to hold a Uniform Resource Locator together with an
associated text label, for example:

labeledURL: http://www.mnn.com/ Multi-National Network Limit
 ed home page

B.2 Extending the schema

If there is a local requirement to hold information that does not map to existing object class
or attribute definitions, then it may be necessary to extend the schema used by the Directory
Service.

The Directory Server and DAP DUAs read the optional (ETCDIR)/dsaptailor and
(SHAREDIR)/dsaptailor files on start-up. (An example file is supplied which may be used
as the basis of an actual dsaptailor file if required.)

Each dsaptailor file entry has the form:

<key> <value> [<value> ...]

where <key> is the entry identifier.

All comment lines must be preceded by a #.

The first non-comment line of the dsaptailor file must be to configure the Object Identifier
(OID) definition tables, giving the files containing the allowed object classes and attributes.
For example:

oidtable oidtable

will direct the Directory Server and DAP DUAs to consult the files oidtable.gen, oidtable.at,
oidtable.oc, to obtain the string of OID mappings needed for operating the Directory. If
the value is not an absolute path (such as /opt/isode/share/oidtable), they will attempt to
find these files in the (ETCDIR) directory, and if not present there, in the (SHAREDIR)
directory.

There can be multiple values for oidtable, so local schema additions can be kept in local
files. For example:

Attributes

257M-Vault Administration Guide

oidtable oidtable local

will direct the Directory Server and DAP DUAs to consult the files oidtable.gen, oidtable.at,
oidtable.oc, local.gen, local.at, and local.oc.

In the absence of a dsaptailor file, the Directory Server and DAP DUAs will use a default
oidtable value of “oidtable mbox atn military”.

Note: A fatal error will occur if all three of a set of files is missing (i.e. oidtable.*
or local.*).

It is strongly recommended that any local schema definitions are made in separate files
(e.g. local.gen, local.at and local.oc), as this will simplify upgrades to future versions of
M-Vault.

Once a set of additional filenames has been chosen and configured in dsaptailor, the actual
schema extensions can be entered.

B.2.1 *.gen files

The *.gen files contain mappings from OIDs to names used in the *.at and *.oc files. This
can be used to simplify the entries in the other files. The local.gen file would usually contain
references to the OID arcs allocated to the organization for use within their Directory
Service. The format of *.gen files is described at the top of oidtable.gen.

If for example an organization had been allocated an OID by the IANA, then they might
have a local.gen file containing:

Start of local definitions
example-org: enterprises.123456
example-org-at: example-org.1
example-org-oc: example-org.2
End of local definitions

B.2.2 *.at files

Any additionally required attributes should be defined in *.at files. The format of *.at files
is described at the top of oidtable.at.

Note: Every attribute must be defined with an attribute syntax; for a description
of commonly used attribute syntaxes see Appendix C, Attribute Syntaxes.

The organization may for example have a local.at file containing:

Start of local definitions
imapQuota: example-org-at.1: Integer: single-value
webQuota: example-org-at.2: Integer: single-value
webPath: example-org-at.3: CaseIgnoreString: \
 single-value
End of local definitions

B.2.3 *.oc files

Any additionally required object classes should be defined in *.oc files. The format of *.oc
files is described at the top of oidtable.oc.

Attributes

258M-Vault Administration Guide

These object classes could reference standard attributes, or the locally defined attributes,
or a combination. The organization may for example require a local.oc file containing:

Start of local definitions
customer: example-org-oc.1: top: : \
 imapQuota, webQuota, webPath : kind=auxiliary

In other words, customer is a subclass of top, and has three optional attributes. It is an
auxiliary object class, and could be used together in an entry with person, or
inetOrgPerson.

After restarting the Directory Server and all DAP DUAs, the new schema definitions should
be available for use.

B.2.4 Customising DUAs

Further changes may be required in DUAs to allow them to recognise and utilise the custom
schema. Often, LDAP-based DUAs will be able to read entries using the custom schema
without any modification.

However it can still be useful to customise DUAs so that they display the custom schema
in a useful way. To customise Sodium, the ADUA provided with M-Vault, please see
Appendix D, Customising Sodium.

Attributes

259M-Vault Administration Guide

Appendix C Attribute Syntaxes
Attribute values have an internal structure described by their syntax. When communicated
over LDAP, or displayed in user agents like Sodium and M-Vault Console, the string
representations associated with those syntaxes are used. This appendix describes all the
currently recognized syntaxes and their LDAP string representations.

The string representations described in this appendix are also used in Sodium when
displaying, modifying or adding entries. For most of the string representations, a BNF
description is given using the following base descriptions:

ALPHA = (any upper or lower case IA5 character)
DIGIT = (any digit)
LDIGIT = (digits 1 to 9)
PrintableCharacter = ALPHA / DIGIT / "'" / "(" / ")" /
 "+" / "," / "-" / "." / "=" /
 "/" / ":" / "?" / " "
Octet = (any octet)
TeletexCharacter = (any TeletexString character, see below)
BMPCharacter = (any UCS-2 encoded Unicode character)
UniversalCharacter = (any UCS-4 encoded Unicode character)
UTF8Character = (any UTF-8 encoded Unicode character)

C.1 Character sets and matching rules

The Directory Server supports all five of the Directory string character sets: PrintableString,
TeletexString, BMPString (Unicode), UniversalString (4 octet Unicode) and UTF8String
(Unicode, but encoded compactly).

C.1.1 PrintableString characters

The printable string characters are the letters, numbers and selected symbols: apostrophe,
left and right parenthesis, plus sign, comma, hyphen, period, equals, solidus (forward slash),
colon, question mark and space.

C.1.2 TeletexString characters

The following character sets are supported:

DescriptionName

Similar to ASCIIISO-IR-6

Multicode CJKISO-IR-87

Similar to ACSCIIISO-IR-102

Accent modifiersISO-IR-103

Control characters (C0)ISO-IR-106

Control characters (C1)ISO-IR-107

Greek (ISO-8859-7)ISO-IR-126

Cyrillic (ISO-8859-5)ISO-IR-144

Greek (CCITT)ISO-IR-150

Cyrillic (GOST-19768-74)ISO-IR-153

Attribute Syntaxes

260M-Vault Administration Guide

DescriptionName

Accent modifiersISO-IR-156

The initial character set invocations are described in this section, as they form the default.

Code range (hexadecimal)Name

00-1FISO-IR-106

20-7FISO-IR-102

80-9FISO-IR-107

A0-FFISO-IR-103

C.1.3 BMPStrings, UniversalStrings and UTF8Strings

BMPStrings are the same as Unicode (which is a UCS-2 encoding of ISO-10646). Universal
strings are 4 byte Unicode (which is a UCS-4 encoding of ISO-10646), but as yet has not
extended the character set. UTF8 strings are also Unicode, but encoded more compactly.

C.1.4 Matching rules

An important part of the Directory Server is the ability to search for specified attributes.
The most common type of matching is equality: that a presented attribute type and value
is the same as a value of that attribute type in an entry. Remember that a large number of
the standard attributes match case insensitively; for Directory strings, the match is also
independent of the character set; for example “tim” will match “TIM”.

For many string syntaxes an approximate match is also supported; however, the approximate
match method used is Directory Server-dependent. A Directory Server can be configured
to use either a soundex-based algorithm or a metaphone-based algorithm. Both algorithms
work by grouping similar-sounding characters into classes. For soundex, the classes and
their corresponding characters are shown in the table below. The first character of a word
is always used as the first character of its corresponding soundex code. Adjacent similar
characters are ignored. Thus, the word “Robens” has soundex code “R152”. Since the word
“Robbins” also has soundex code “R152”, these two words are approximately equal. To
match multiple words each of the target words must appear in order in the string to which
it is being compared. There may, however, be other items in between the words matched.
For example: “Tim Howes” would match “Timothy Alan Howes” since “Tim” matches
“Timothy,” “Howes” matches “Howes,” and the matched words are in the proper order.

Table C.1. Soundex character classes

Soundex classCharacters

1BFPV

2SCGJKQXZ

3DT

4L

5MN

6R

ignoredall others

Attribute Syntaxes

261M-Vault Administration Guide

C.2 Common attribute syntaxes

This section describes the syntaxes and string representations used by commonly defined
attributes

C.2.1 ASN

No LDAP string representation is defined for this syntax.

C.2.2 Audio

This syntax is used to represent µ-law encoded audio. This format is normally used in files
with .au extensions.

No human-readable LDAP string representation is defined for this syntax. The octets in
the raw file are used as-is in the attribute value.

C.2.3 BitString

Value = "'" *("0" / "1") "'B"

Also note other syntaxes are available which allow named bits to be set in a bit string. For
example, see Section C.3.1, “DSEType”.

C.2.4 Boolean

The value represents true or false.

Value = "TRUE" / "FALSE"

C.2.5 CaseExactString/CaseIgnoreString

Value = 1*UTF8Character

This syntax represents the DirectoryString syntax, which allows PrintableString,
TeletexString, BMPString, UniversalString, and UTF8String values. However the LDAP
string representation automatically converts all strings to UTF-8.

The CaseExactString variant uses case-sensitive matching, and the CaseIgnoreString
variant uses case-insensitive matching.

C.2.6 CaseIgnoreList

The CaseIgnoreList syntax consists of a sequence of CaseIgnoreString values.

Value = line *("$" line)
line = (see CaseIgnoreString syntax)

The line values require that any “$” and “\” characters be escaped i.e. written as \24 and
\5c respectively.

Only equality matching is supported for this syntax.

Attribute Syntaxes

262M-Vault Administration Guide

C.2.7 CountryString

Value = 2PrintableCharacter

This syntax is treated as a PrintableString, with case-insensitive matching rules. Note the
string must be two letters and one of the country codes defined by ISO 3166. For example:

c: GB

C.2.8 DeliveryMethod

This defines the priority order when communicating with an object.

Value = pdm *("$" pdm)
pdm = "any" / "mhs" / "physical" /
 "telex" / "teletex" / "g3fax" /
 "g4fax" / "ia5" / "videotex" /
 "telephone"

For example:

preferredDeliveryMethod: telephone$videotex

C.2.9 DestinationString

This syntax is used to define the addressee as required by the Public Telegram Service.

Value = 1*PrintableCharacter

Case-insensitive matching rules are used.

C.2.10 DN

The DN syntax represents the distinguished name of an entry which may or may not exist.

Value = [rdn *("," rdn)]
rdn = ava *("+" ava)
ava = attrname "=" attrstring / ; normal form
 oid "=" "#" attrberhex

Two forms of attribute value assertion are defined: the normal form uses an attribute name
such as cn and a string representation of the attribute value. The string representation used
here requires that any “,”, “+” or “\” characters be escaped i.e. written as \,, \+, \\, or
\2c, \2b, \5c respectively.

The other form of attribute value assertion uses the OID of the attribute type and the BER
encoding (converted to hexadecimal) of the underlying attribute value.

For example:

dn: o=Isode,c=GB
dn: cn=Legal Eagle,o=Sue\, Grabbit and Runne,c=GB
dn: 2.5.4.2=#13054c6567616c,dc=example,dc=com

Attribute Syntaxes

263M-Vault Administration Guide

C.2.11 FacsimileTelephoneNumber

This syntax represents the telephone number and parameters associated with a fax terminal.

Value = telephone-number *("$" fax-parameter)
telephone-number = PrintableString
fax-parameter = "twoDimensional" / "fineResolution" /
 "unlimitedLength" / "b4Length" /
 "a3Width" / "b4Width" /
 "uncompressed"

For example:

facsimileTelephoneNumber: +44 602 123 4567$twoDimensional

C.2.12 GeneralizedTime

The value represents a time and date with a 4-digit year.

Value = YYYY MM DD hh
 [mm [second]] [fraction]
 offset
fraction = ("." / ",") 1*DIGIT
offset = "Z" / positive / negative
positive = "+" hh [mm]
negative = "-" hh [mm]
YYYY = 4DIGIT ; year
MM = 2DIGIT ; month 01 - 12
DD = 2DIGIT ; day 01 - 31
hh = 2DIGIT ; hour 00 - 23
mm = 2DIGIT ; minutes 00 - 59
second = 2DIGIT ; seconds 00 - 60 (leap second)

For example the string 200412161032Z is used to represent 10:32 at UTC, on December
16th, 2004.

C.2.13 IA5String/CaseIgnoreIA5String

IA5Character = (any IA5 character)
Value = 1*IA5Character

This syntax is handled as PrintableString, except a wider range of characters are recognized,
i.e., any character in IA5 string. The IA5String variant uses case-sensitive matching and
the CaseIgnoreIA5String variant uses case-insensitive matching. For example:

mail: info@isode.com

C.2.14 Integer

The value represents a positive, zero, or negative integer.

Value = ("-" LDIGIT *DIGIT) / number
number = DIGIT / (LDIGIT 1*DIGIT)

For example:

Attribute Syntaxes

264M-Vault Administration Guide

adminSizeLimit: 123456

C.2.15 JPEG

This syntax is used to represent JPEG images, encoded using either the “JPEG File
Interchange Format” (JFIF), or the “Exchangeable Image File Format” (Exif). Both formats
are commonly used in files with .jpg extensions.

No human-readable LDAP string representation is defined for this syntax. The octets in
the raw file are used as-is in the attribute value.

C.2.16 Mailbox

This syntax is used to hold values for non-X.400 and non-Internet email addresses.

Value = 1*PrintableCharacter "$" 1*IA5Character

For example:

otherMailbox: bmail $ info%company

C.2.17 NameAndOptionalUID

The value represents a distinguished name together with an optional bit string used for
disambiguation.

Value = dn ["#" bitstring]
dn = (see DN syntax)
bitstring = (see BitString syntax)

For example:

uniqueMember: cn=John,ou=Staff,o=Company
uniqueMember: cn=John,ou=Staff,o=Company#'1001'B

C.2.18 NisBootParameter

Value = key "=" server ":" path
key = (See PrintableString syntax)
server = (See PrintableString syntax)
path = (See PrintableString syntax)

C.2.19 NisNetgroupTriple

Value = "(" hostname "," username "," domainname ")"
hostname = "" / "-" / p
username = "" / "-" / p
domainname = "" / "-" / p
p = (See PrintableString syntax)

Attribute Syntaxes

265M-Vault Administration Guide

C.2.20 NisPublicOrSecretKey

Value = "{" keytype "-" keylength "-" algorithm "}" key
keytype = (See PrintableString syntax)
keylength = (See PrintableString syntax)
algorithm = (See PrintableString syntax)
key = (See PrintableString syntax)

C.2.21 NumericString

Value = 1*DIGIT

The value is a string of digits (0 through 9 only).

C.2.22 ObjectClass

Although essentially an object identifier, a separate syntax is provided as the identifiers
have additional semantics when used as an object class.

Value = oid / name
oid = number 1*("." number)
number = DIGIT / (LDIGIT 1*DIGIT)

For example:

objectClass: top
objectClass: person

C.2.23 OctetString

Value = 1*Octet

This syntax represents arbitrary octets, not a text string.

C.2.24 OID

The value in this syntax is an object identifier, i.e., a dotted series of non-negative integers.
Any attribute or label defined in the schema files is also a valid value.

Value = oid / name
oid = number 1*("." number)
number = DIGIT / (LDIGIT 1*DIGIT)

For example:

pwdAttribute: userPassword

C.2.25 Password/EncryptedPassword

Value = 1*Octet

Attribute Syntaxes

266M-Vault Administration Guide

Values using the Password syntax may be hashed when stored in the GDAMs if the
Directory Server has password hashing enabled, see Section 5.6.3, “Storing passwords in
the GDAM”. The resulting values then have a string representation:

Value = schemeprefix hashedpassword
schemeprefix = "{" scheme "}"
scheme = "crypt" / "md5" / "sha" / "sha2" /
 "smd5" / "ssha" / "ssha2" / "scram-sha-1"
hashedpassword = (encoded password octets)

The following schemes simply base-64 encode the hashed password values, as per RFC
2307:

• md5 – Unsalted MD5

• sha – Unsalted SHA1

• sha2 – Unsalted SHA2

• smd5 – Salted MD5

• ssha – Salted SHA1

• ssha2 – Salted SHA2

The scram-sha-1 scheme uses the format described in RFC 5803. For example:

userPassword: secret
userPassword: {CRYPT}50PM1cfj3zSZg
userPassword: {SSHA2}Y3+1weG3ObqWS7eEd4NwxiMhElHfA50yXcJOYTMWEsF
 Zl3Tv
userPassword:: e1NDUkFNLVNIQS0xfTQwOTY6NHNGTG9UVzc1UFA0MkFtQlcyN
 mw1dz09JGQ3QnplbTlnWVQ5ZTRwaml2aUxIKzN2bVJubz06eG5Ta1k4V1NBQTZa
 TmlCOWdBb1AyTnI5RXBvPQ==

Note: The use of crypt, md5, sha, sha2, smd5, ssha, ssha2 or scram-sha-1
mechanisms with this syntax changes the behavior of some Directory operations
in some possibly unexpected ways.

The compare, bind, modify, and search operations behave asymmetrically with values
of this syntax: if one of the values is hashed, the other value used in the operation must be
the plaintext value. For example, if the stored password is hashed using MD5, the password
in the bind operation must be cleartext. If the stored password is not hashed (i.e. using
plain) then the password in the bind operation may be hashed using any of the other
supported hash mechanisms.

This asymmetry is required to prevent an attacker from reusing passwords that have been
read from network packets, or otherwise read from the Directory.

The add and modify operations will hash any plaintext values that the DSA is sent before
storing them in the GDAM. Any passwords that the user has already hashed correctly (using
the above listed mechanisms) will be stored in the GDAM as is.

C.2.26 Photo

This syntax is used to represent G3 Fax images. No LDAP string representation is defined,
and values should be transferred using ;binary.

C.2.27 PostalAddress

The PostalAddress syntax consists of a sequence of up to 6 CaseIgnoreStrings each of
up to 30 characters.

Attribute Syntaxes

267M-Vault Administration Guide

Value = addressline *5("$" addressline)

The line values require that any “$” and “\” characters be escaped i.e. written as \24 and
\5c respectively.

Only equality matching is supported for this syntax.

For example:

postalAddress: 36 Station Road$Hampton$Middlesex

C.2.28 PresentationAddress

Value = [[[psel "/"] ssel "/"] tsel "/"] 1*naddr
psel = [""" IA5String """ / "'" hexstring "'H"]
ssel = [""" IA5String """ / "'" hexstring "'H"]
tsel = [""" IA5String """ / "'" hexstring "'H"]
naddr = (network address string)

For example:

presentationAddress: "X500"/URI+0000+URL+itot://server.example.c
 om:19999|URI+0000+URL+ldap://server.example.com

C.2.29 PrintableString/CaseIgnorePrintableString

Value = 1*PrintableCharacter

The value can be any character listed for PrintableString. The PrintableString variant
uses case-sensitive matching, and the CaseIgnorePrintableString variant uses
case-insensitive matching.

C.2.30 TelephoneNumber

Value = 1*PrintableCharacter

Values are PrintableStrings, but are expected to be formatted as international telephone
numbers as per E.123 i.e.

Value = "+" country national [ext extension]
country = 1*DIGIT
national = 1*(DIGIT / " ")
ext = 1*(ALPHA / " ") ; eg "x" or "ext"
extension = 1*DIGIT

For example:

telephoneNumber: +22 607 123 4567
telephoneNumber: +1 302 123 4567 x876

Matching is case-insensitive, except that all space and “-” characters are skipped during
the comparison.

Attribute Syntaxes

268M-Vault Administration Guide

C.2.31 TelexNumber

Value = number "$" countrycode "$" answerback
number = PrintableString
countrycode = PrintableString
answerback = PrintableString

For example:

telexNumber: 12345GPHYS

C.2.32 UTCTime

The value represents a time and date with a 2-digit year. Use of GeneralizedTime is
recommended to avoid ambiguities with 2-digit years.

Value = YY MM DD hh mm [ss] offset
offset = "Z" / positive / negative
positive = "+" hh mm
negative = "-" hh mm
YY = 2DIGIT ; two low order digits of the year
MM = 2DIGIT ; month 01 - 12
DD = 2DIGIT ; day 01 - 31
hh = 2DIGIT ; hour 00 - 23
mm = 2DIGIT ; minutes 00 - 59
ss = 2DIGIT ; seconds 00 - 59

For example the string 980602093221Z is used to represent 09:32:21 at UTC, on June
2nd, 1998.

C.2.33 UUID

This syntax is used to represent universally unique identifiers (UUIDs).

Value = time-low "-" time-mid "-"
 time-high-and-version "-"
 clock-seq-and-reserved
 clock-seq-low "-" node
time-low = 4hexoctet
time-mid = 2hexoctet
time-high-and-version = 2hexoctet
clock-seq-and-reserved = hexoctet
clock-seq-low = hexoctet
node = 6hexoctet
hexoctet = 2hexdigit
hexdigit = (hex digit 0 - 9, A - F, a - f)

For example:

entryUUID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6

Attribute Syntaxes

269M-Vault Administration Guide

C.3 X.500 operational attribute syntaxes

C.3.1 DSEType

This is a named bit string.

Value = "(" dsebit *("$" dsebit) ")"
dsebit = "root" / "glue" / "cp" / "entry" /
 "alias" / "subr" / "nssr" / "supr" /
 "xr" / "admPoint" / "subentry" / "shadow" /
 "zombie" / "immSupr" / "rhob" / "sa" /
 "dsSubentry" / "str"

For example:

dseType: (entry $ shadow)

C.3.2 ProtocolInformation

This holds the bilaterally-agreed profiles (OIDs) associated with a given OSI network
address.

Value = networkaddr "#" profiles
profiles = pi /
 "(" pi *("$" pi) ")"
pi = (see OID syntax)
networkaddr = (see PresentationAddress syntax)

protocolInformation: URI+0000+URL+itot://server.example.com:1999
 9 # 1.2.3.4.5.6.7

C.3.3 AccessPoint93

This is used to hold an X.500 access point.

Value = dn "#" presentationaddr /
 "(" dn "#" presentationaddr "#" protinfo ")"
dn = (see DN syntax)
presentationaddr = (see PresentationAddress syntax)
protinfo = (see ProtocolInformation syntax)

For example:

superiorKnowledge: cn=DSA,o=Company # URI+0000+URL+itot://server
 .example.com:19999|URI+0000+URL+ldap://server.example.com

C.3.4 MasterAndShadowAccessPoints

Value = masap /
 "(" masap *("$" masap) ")"

Attribute Syntaxes

270M-Vault Administration Guide

masap = category "#" accesspoint
category = "master" / "shadow"
accesspoint = (see AccessPoint93 syntax)

For example:

specificKnowledge: master # cn=DSA1 # URI+0000+URL+itot://server
 .example.com:19999
specificKnowledge: (master # cn=DSA1 # URI+0000+URL+itot://serv
 er.example.com:19999 $ shadow # cn=DSA2 # URI+0000+URL+itot://s
 hadow.example.com:19999)

C.3.5 SupplierOrConsumer

This is used to hold shadowing knowledge. Also see Section C.3.7, “SupplierAndConsumer”.

Value = agreement "#" accesspoint
agreement = bindingid "." bindingversion
bindingid = 1*DIGIT
bindingversion = 1*DIGIT
accesspoint = (see AccessPoint93 syntax)

For example:

consumerKnowledge: 1.1 # cn=DSA2 # URI+0000+URL+itot://server.ex
 ample.com:19999

C.3.6 SupplierInformation

Value = "(" "master" "#" soc ")" / ; is (master)
 "(" "shadow" "#" soc ")" / ; isn't, master unknown
 "shadow" "#" soc "#" "(" ap ")" ; isn't, master known
soc = (see SupplierOrConsumer syntax)
ap = (see AccessPoint93 syntax)

For example:

supplierInformation: shadow # 100.1 # (cn=DSA1 # URI+0000+URL+i
 tot://server.example.com:19999)

C.3.7 SupplierAndConsumer

This is used to hold shadowing knowledge.

Value = supplier "#" consumers
supplier = (see AccessPoint93 syntax)
consumers = consumer /
 "(" consumer *("$" consumer) ")"
consumer = (see AccessPoint93 syntax)

For example:

secondaryShadows: ((cn=DSA2 # URI+0000+URL+itot://shadow.exampl
 e.com:19999) $ (cn=DSA3 # URI+0000+URL+itot://shadow2.example.c
 om:19999))

Attribute Syntaxes

271M-Vault Administration Guide

C.4 X.400 attribute syntaxes

C.4.1 ORAddress

This is used to hold an X.400 O/R address.

Value = "/" 1*component
component = ctype "=" cvalue "/"
ctype = (any key from RFC 2156, e.g. "C", "S", etc)
cvalue = pstring ["*" tstring] ["&" bstring] ["%" ustring]
pstring = 1*PrintableCharacter
tstring = (escaped Teletex characters)
bstring = (BMP characters in UTF-7)
ustring = (Universal characters in UTF-7)

For example:

mhsORAddress: /i=P/s=Principle/o=Widget/prmd=Widget Co/admd= /c=
 GB/

C.4.2 ORName

This is used to hold an X.400 O/R address and an associated DN.

Value = "X400:" [oraddress] ["#X500:" dn]
oraddress = (see ORAddress syntax)
dn = (see DN syntax)

For example:

mhsDLMembers: X400:/cn=Example/o=None/prmd=Test/admd= /c=US/#X50
 0:dc=example,dc=com
mhsDLMembers: X400:/cn=Example/o=None/prmd=Test/admd= /c=US/
mhsDLMembers: X400:#X500:cn=John Doe,dc=example,dc=com

Note that previous Isode releases used a different string representation. The above examples
would have looked like:

mhsDLMembers: dc=example,dc=com $ /cn=Example/O=None/prmd=Test/a
 dmd= /c=US
mhsDLMembers: $ /cn=Example/O=None/prmd=Test/admd= /c=US
mhsDLMembers: cn=John Doe,dc=example,dc=com $

C.4.3 DLSubmitPermission

Value = "group_member:" dn /
 "individual:" orname /
 "dl_member:" orname /
 "pattern:" orname
dn = (see DN syntax)
orname = (see ORName syntax)

Attribute Syntaxes

272M-Vault Administration Guide

For example:

mhsDLSubmitPermissions: group_member:cn=My Group,c=US
mhsDLSubmitPermissions: dl_member:X400:#X500:cn=John Doe,dc=exam
 ple,dc=com
mhsDLSubmitPermissions: individual:X400:/cn=Example/o=None/prmd=
 Test/admd= /c=US/
mhsDLSubmitPermissions: pattern:X400:/O=None/

Note that previous Isode releases used a different string representation. The above examples
would have looked like:

mhsDLSubmitPermissions: GROUP# cn=My Group,c=US
mhsDLSubmitPermissions: MEMBER# cn=John Doe,dc=example,dc=com $
mhsDLSubmitPermissions: INDIVIDUAL# $ /cn=Example/o=None/prmd=Te
 st/admd= /c=US
mhsDLSubmitPermissions: PATTERN# /o=None/

C.5 ACP133 syntaxes

The definitions in this section were adapted from version 1.0 of Combined
Communications-Electronic Board (CCEB) Publication 1008: CCEB Guidelines for
Implementing the Lightweight Directory Access Protocol (LDAP), which describes the
implementation of the schema defined in Allied Communication Publication (ACP) 133
with respect to LDAP clients.

C.5.1 RIParameters

Value = "rI=" ri
 "riType=" ritype
 "minimize=FALSE"
 "sHD=" shd
 "classification=" classification
ri = 1*PrintableCharacter
ritype = "0" / ; normal
 "1" / ; off-line
 "2" ; partTimeTerminal
shd = 1*PrintableCharacter
classification = "0" / ; unmarked
 "1" / ; unclassified
 "2" / ; restricted
 "3" / ; confidential
 "4" / ; secret
 "5" ; top secret

C.5.2 Remarks

Value = [*p *("$" *p)]
p = PrintableCharacter

Attribute Syntaxes

273M-Vault Administration Guide

C.5.3 ONSupported

Value = namedbits / bitstring
namedbits = "{" [namedbit * ("," namedbit)] "}"
namedbit = "acp127-nn" / "acp127-pn" / "acp127-tn"
bitstring = (see BitString syntax)

C.5.4 MLReceiptPolicy

Value = none / insteadof / inadditionto
none = "none"
insteadof = "instead of"
 generalnames *15("$" generalnames)
generalnames = generalname *("%" generalname)
generalname = ("otherName = " othername) /
 ("rfc822Name = " ia5string)/
 ("dNSName = " ia5string) /
 ("x400Address = " oraddress) /
 ("directoryName = " name) /
 ("ediPartyName = "
 ["nameAssigner:" dirstring]
 "partyName:" dirstring) /
 ("uniformResourceIdentifier = " ia5string) /
 ("iPAddress = " octetstring) /
 ("registeredID = " numericoid)
othername = (BER encoding of type and value pair)
ia5string = (See IA5String syntax)
oraddress = (See ORAddress syntax)
name = (See DN syntax)
dirstring = (See CaseIgnoreString/CaseExactString syntax)
octetstring = (See OctetString syntax)

C.5.5 Addresses

Value = [1*55p *("$" 1*55p)]

C.6 Reading the subschema from a client

The Directory Server now allows client read access to subschema information (as configured
in the file-based oidtables). Some clients, such as the latest Active Directory applications,
require this ability in order to be able to access M-Vault.

Subschema are published via subschema subentries. The list of known subschema subentries
is listed in values of the subschemaSubentry attribute of the root DSE (which can be read
by DAP and LDAP clients). In addition, the subschema subentry governing a particular
entry can be discovered by reading the value of subschemaSubentry from the entry in
question. Note that LDAP clients must explicitly add subschemaSubentry to the entry
information selection in order to read the attribute. This is because subschemaSubentry
is an operational attribute. Also note that LDAP clients can only read subschema subentries
by performing a base object search using the filter objectclass=subschema.

The subschema attributes currently supported by M-Vault are limited to attributeTypes
(the set of known attribute types) and objectClasses (the set of known object classes).

Attribute Syntaxes

274M-Vault Administration Guide

Others, e.g. nameForms, are not currently supported. LDAP subschema publication and
retrieval mechanisms are described in RFC 4512.

Attribute Syntaxes

275M-Vault Administration Guide

Appendix D Customising Sodium
Sodium’s built-in templates can be modified to suit local needs.

When Sodium uses the Template or Full views, it displays entries that are read from the
Directory using one of a number of configured templates. The template used is based on
the objectclasses of the entry being read. A built-in Raw template is provided for cases
when the objectclasses do not match any other templates.

Templates are also used when adding new entries.

You may wish to modify Sodium’s templates if:

• you are using the standard schema in a slightly different way (for example, only allowing
one telephone number for a person)

• you are using locally-defined custom schema

• you want to set up pre-initialized field values (see Section D.11, “‘Add’ templates”).

Note: Editing the templates in Sodium will not change the schema being used
by Sodium and the Directory Server, and you still need to customize the schema
files as described in Section B.2, “Extending the schema”.

Templates are stored in the templates.xml file, which Sodium will look for in
(ETCDIR)/sodium and then (SHAREDIR)/sodium when it starts. It can be edited using any
plain text editor, or an XML editor. It includes definitions from other template files,
including an optional custom-templates.xml file. Definitions in the custom-templates.xml
file will override identically matching templates in the templates.xml file.

Each template references a number of forms that are used by Sodium. Each form defines
one or more named groups.

Each named group is displayed by Sodium in a separate tab. Each group is defined to have
a number of fields.

Each field describes an attribute name, and which editor to use when displaying values.
For example, this template describes an ISP User which displays two attributes in a tab
labelled Customer:

<editor-templates version="1.2">
 <template rdn="cn" keyclass="ispUser"
 label="ISP User">
 <form ref="isp-user"/>
 </template>
 <form name="isp-user">
 <group label="Customer">
 <editor label="Name" attrtype="cn"
 fields="1"/>
 <editor label="Email" attrtype="mail"
 fields="1"/>
 </group>
 </form>
</editor-templates>

Customising Sodium

276M-Vault Administration Guide

D.1 <editor-templates> element

This is the root XML element. It can contain child <template>, <form>, <enumeration>
and <include> elements in any order. It has one attribute:

version

the version of this template specification, which is currently "1.2"

D.2 <include> element

This has 2 attributes:

filename

the name of the XML file from which additional definitions are read. This attribute is
mandatory.

optional

indicates if the file must be present or not. Values of this XML attribute must be either
"yes" or "no", the default is "no".

D.3 <enumeration> element

This defines a set of mappings for an enumeration, which can be referred to from <editor
editor="enumeration" ...> elements. It contains a number of child <value> elements
defining the mappings. For example:

<enumeration name="alert_codes"
 unset="No information" allowinvalid="yes">
 <value internal="AC1" display="Yellow Alert"/>
 <value internal="AC2" display="Red Alert"/>
 <value internal="AC3" display="Battle Stations"/>
</enumeration>

There are four attributes:

name

The identifier that can be used to refer to this enumeration from <editor> elements.

unset

This defines what additional text should appear in the case that an attribute has no
value.

allowinvalid

This has a value of "yes" or "no" and defines whether illegal values in the field (ones
not listed in the enumeration) result in a warning (allowinvalid="yes") or an error
(allowinvalid="no"). If not specified, the default is allowinvalid="yes".

Customising Sodium

277M-Vault Administration Guide

casesensitive

This has a value of "yes" or "no" and defines whether internal values are matched
case sensitively to the attribute values or not. The default is "yes".

D.4 <value> element

This defines a single mapping within an <enumeration> between an internal stored value
and the human-readable text that should be displayed for that value. The attributes are:

internal

The internal value to map (as stored on the Directory).

display

The human-readable text that should be displayed in its place.

D.5 <template> element

This has 4 attributes:

rdn

a space-separated list of LDAP attributes that will form the name of the entry

keyclass

a space-separated list of objectclasses that are used to match this template (all have to
match)

label

the label to use when selecting the template when adding an entry

icon

the filename of the icon to display next to the template in the Add wizard, see
Section D.10.23, “Template icons” for more details.

Only the minimum objectclasses necessary to match the desired entry/entries should be
listed in the keyclass. Typically this would just be the structural objectclass and any
appropriate auxiliary objectclasses.

The <template> element contains a number of child <form> elements.

D.6 <form> element

D.6.1 Within a <template> element

When the <form> element is a child of a <template> element, it defines a reference to
the actual <form> used. These references can be mandatory or optional. Optional references
are useful when defining auxiliary object classes for a template. In this context it has 5
attributes:

Customising Sodium

278M-Vault Administration Guide

ref

the name of the <form> element being referred to (mandatory)

keyclass

for optional <form>s, the additional objectclass to use

label

the label to use when selecting the optional parts of the template

icon

the filename of the icon to use when displaying the form in the Add wizard, see
Section D.10.23, “Template icons” for more details. If present, the icon will override
the icon specified in the <template>.

use

the situation that this form should be used for, either "add" or "edit" or "add edit"
(the default). See Section D.11, “‘Add’ templates” for more details.

D.6.2 Within the <editor-templates> element

When the <form> element is a direct child of the <editor-templates> element, it
defines the groups used by the form, that is, which attributes to display. In this context, it
only has one attribute, and contains one or more child <group> elements:

name

the name of the <form> element being defined.

D.7 <group> element

This has a label attribute, which will appear on screen as the tab’s label. It can only
contain child <editor> or <label> elements.

Multiple <group>s can use the same label. When a template uses forms that use multiple
groups with the same label, the contents of the groups are merged together for that template.

Certain optional attributes may be used to create special-purpose groups.

misc

May have a value "yes" or "no", defaulting to “no”. If "yes", then this group
becomes a ‘misc’ tab that shows all the remaining user attributes present in the entry
that are not yet handled by any other tab, using default editors selected according to
syntax type.

addattr

May have a value of "yes" or "no". If "yes" and misc="yes" is also specified,
then a button is added to the tab which allows further attributes to be added by name.

D.8 <label> element

This simply displays a label covering the entire row. It has one attribute:

label

the string displayed on screen.

Customising Sodium

279M-Vault Administration Guide

D.9 <memberof> element

This element may be used to display a list containing the names of all the groups that have
the selected entry as a member - specifically, Sodium searches for any entries that have an
objectClass of groupOfNames, and displays the DN of any whose member attribute
contains the DN of the selected entry. It has one attribute:

label

the caption to be used on the screen.

Figure D.1. Sodium memberof element

Group names are presented as read-only values using the dn editor (see Section D.10.8,
“dn editor”), which means that you can easily navigate to the group entry by clicking on
the icon next to the group name.

D.10 <editor> element

This has several attributes:

attrtype

the name of the LDAP attribute type being displayed. This attribute is mandatory.

label

the string displayed on screen next to the attribute values. If absent, the attrtype is
used.

Customising Sodium

280M-Vault Administration Guide

compulsory

indicates if the attribute is mandatory or not, regardless of the schema. Values of this
XML attribute must be either "yes" or "no", the default is "no".

readonly

indicates if the attribute may be modified or not, regardless of the Directory Server’s
access controls. Values of this XML attribute must be either "yes" or "no", the default
is "no".

editor

the name of the underlying editor to use. Sodium selects an editor based on the
attribute’s syntax, so it is generally not recommended to specify this unless it is
necessary to override Sodium’s default choice, for example to override a “string” editor
with a “stringtable” editor.

Some editors support additional XML attributes.

D.10.1 autostring editor

This allows string-valued attributes to be edited. A blank field is automatically inserted
when all the other fields contain text. For example:

<editor attrtype="telephonenumber"
 editor="autostring" label="Phone"/>

D.10.2 binary editor

This allows “binary” values to be edited. Instead of displaying them, they are loaded and
saved to disk. Values can be deleted using the Delete button, and additional values added
using the + button. External viewers are supported by specifying one or both of these
attributes:

view_cmd

Specify the external command to run when the View button is clicked alongside an
item. Double or single quotes may be placed around command arguments containing
spaces. Some substitutions are made:

• %D is replaced by the DN

• %A by the attribute name

• %V by the filename of the temporary file containing the value, which will have an
extension of .bin for binary values, or .ber for BER-encoded values

• %% gives a single %

view_all_cmd

Display a View All button which runs the given external command when clicked.
Double or single quotes may be placed around command arguments containing spaces.
Some substitutions are made:

• %D is replaced by the DN

• %A by the attribute name

• %L by the list of filenames of the temporary files containing the value, each of which
will have an extension of .bin for binary values, or .ber for BER-encoded values

• %% gives a single %

For example:

<editor attrtype="jpegphoto"
 editor="binary" label="Photo"
 view_cmd="/home/user/bin/myviewer %D %A %V"/>

Customising Sodium

281M-Vault Administration Guide

D.10.3 boolean editor

This allows boolean values to be edited. A popup menu is used.

The boolean editor also supports this attribute:

fields
controls whether the values "TRUE" and "FALSE" can be used simultaneously or if
the attribute is single-valued (fields is "1").

D.10.4 certificate editor

This allows X.509 certificate values to be edited. Certificate values can be saved to or
loaded from disk. The editor displays various information from the certificate, including
any subjectAltNames that are present, and the Details... button can be used to display
more comprehensive information.

Figure D.2. Sodium certificate editor

The editor will perform various checks on the values inside the certificate, and will highlight
fields which contain information that may be questionable. In the example above, the editor
warns that the certificate contains a subjectAltName value that does not match the
information inside the user’s entry.

For sessions which are bound using strong authentication, the editor displays a Verify...
button, which can be used to perform certificate verification of the value.

D.10.5 certificatepair editor

This allows X.509 certificate pairs to be edited. Certificate pair values may be loaded and
saved as DER files using Save... and Load... To create a new certificate pair, use the New
button followed by Issued By... and Issued To... to load two individual certificates.

D.10.6 certificaterevocationlist editor

This allows X.509 certificate revocation list values to be edited. Values can be loaded or
saved, and the editor will highlight fields which contain information that may be
questionable. The Details... button can be used to display more comprehensive information
about the contents of a CRL.

Customising Sodium

282M-Vault Administration Guide

Figure D.3. Sodium certificaterevocationlist editor

D.10.7 clearance editor

This allows viewing and editing of both clearance and sioClearance attributes, as used
in the case of Directory Servers which are being used in an environment which implements
a Security Policy (see Section 6.5, “Security labels and clearance”).

Values of type clearance will automatically be shown in the clearance editor (unless the
template specifies otherwise).

Values of type sioClearance have a string syntax (these values hold an XML representation
of a security clearance), and so by default will be displayed using a String editor, unless
the template specifies otherwise.

For example:

<editor attrtype="sioClearance"
 editor="clearance"
 label="SIO Clearance"/>

D.10.8 dn editor

This allows DN values to be edited. A Pick button is displayed, which opens a dialog to
allow a DN to be selected from elsewhere in the Directory. The editor also supports these
attributes:

real_dn

controls whether Sodium treats values for this attribute as representing DNs that exist
somewhere in the directory. A value of "yes" means that values will be subject to
DN verification, and a Pick button will be displayed. To specify that a DN value does
not represent an actual DN in the directory, use a value of "no". The default value (if
real_dn is not present) is "yes". Note that this setting only controls the appearance
of the Sodium's template view; it has no effect on the results of a bulk referential
integrity check (see Section 3.9, “Checking the referential integrity of attributes”).

verify_dn

controls whether Sodium will check if the value references an existing entry in the
Directory. This setting overrides the session-specific DN verification check setting.

The Session Settings window (in the Session menu, and also in the Session Management
wizard) controls the number of DN values in an attribute that will be verified.

D.10.9 dlsubmitpermission editor

This allows X.400 DL Submit Permissions to be edited. The values are displayed in a table
with columns titled Permission Type, Distinguished Name and O/R Address.
Double-clicking a row or clicking the Edit button allows the DN and O/R Address
components to be edited. The Add... button allows a new value to be added, and the Remove
button deletes the selected value.

Customising Sodium

283M-Vault Administration Guide

The dlsubmitpermission editor also supports this attribute:

vfill

indicates if the editor should fill the form (so the scrollbar that appears scrolls the
editor, not the form). Values of this XML attribute must be either "yes" or "no", the
default is "no".

D.10.10 enumerated editor

This is for fields which can take a number of pre-defined internal values which we wish
to map to human-readable text for presentation to the user. If the field is modifiable, the
list of human-readable options is displayed as a drop-down list to select from, otherwise
the text for the currently-selected option is displayed as a read-only field. The enumerated
editor relies on sets of enumerated values defined elsewhere in the template file (see
Section D.10.3, “boolean editor”). The editor supports this attribute:

enumeration

indicates the name of the enumeration to use for this field

D.10.11 generalizedtime editor

This provides a read-only decoded view of the a generalized time value, with Clear and
Edit... buttons to allow the internal value to be modified using a dialog box. This operates
similarly to the string editor (below) as regards multi-valued attributes:

minfields

controls the minimum number of fields that will be displayed for a multi-valued attribute

maxfields

controls the maximum number of fields that can be entered for a multi-valued attribute
(if the Directory has more values in the attribute, they will always be displayed)

fields

the same as setting minfields and maxfields to the same value.

D.10.12 jpeg editor

This allows JPEG photographs to be edited. The values are displayed as images, and there
are buttons to load and save the images to disk. Images can be deleted using the Remove
button. Use the View button or double-click on an image to display it at its original size.

D.10.13 oraddress editor

This allows X.400 O/R Addresses to be edited. The values are displayed as compact text
strings in the format described in Section C.4.3, “DLSubmitPermission”. An Edit button
displays an O/R Address Editor window, which allows each component in the address
to be edited in a separately labelled text field. The O/R Address Editor window supports
different O/R Address name forms.

Customising Sodium

284M-Vault Administration Guide

Figure D.4. O/R Address Editor

D.10.14 orname editor

This allows X.400 O/R Names to be edited. The values are displayed in a table with columns
titled Member O/R Address and Distinguished Name. Double-clicking a row or clicking
the Edit button allows the O/R Address and DN components to be edited. The Add...
button allows a new value to be added, and the Remove button deletes the selected value.
The orname editor also supports this attribute:

vfill

indicates if the editor should fill the form (so the scrollbar that appears scrolls the
editor, not the form). Values of this XML attribute must be either "yes" or "no", the
default is "no".

D.10.15 pkcs7 editor

This editor allows PKCS#7 attribute values to be edited. It displays the certificate from the
value, using the same format as the certificate editor (see Section D.10.4, “certificate
editor”).

D.10.16 postaladdress editor

This allows multi-line postal addresses to be edited. An (optional) F button will fill the
value using values from other attributes. A T button will trim extraneous whitespace from
the value. The postaladdress editor supports this optional attribute:

fillwith

specifies a space-separated list of other attributes which will be used (in the order
given) to “fill” the value. This enables the F button.

D.10.17 readonlylist editor

This allows multiple string values to be displayed using a popup list.

D.10.18 securitylabel editor

This allows viewing and editing of both securityLabel and sioLabel attributes, as used in
the case of Directory Servers which are being used in an environment which implements
a Security Policy (see Section 6.5, “Security labels and clearance”).

Values of type securityLabel will automatically be shown in the securitylabel editor (unless
the template specifies otherwise). Values of type sioLabel have a string syntax (these

Customising Sodium

285M-Vault Administration Guide

values hold an XML representation of a securityLabel), and so by default will be displayed
using a String editor, unless the template specifies otherwise. For example:

<editor attrtype="sioLabel"
 editor="securitylabel"
 label="SIO Label"/>

D.10.19 securitylabelinfo editor

This allows viewing and editing securityLabelInfo attributes, as used in the case of
Directory Servers which implement Security Policy (see Section 6.5, “Security labels and
clearance”). This editor provides the ability to browse a catalog of labels, from which new
values may be loaded, using the same mechanism as described in Section D.10.18,
“securitylabel editor”.

D.10.20 string editor

This allows string-valued attributes to be edited. Unlike the autostring editor, new values
must be explicitly added using the + button. Deleting all the characters in a field will delete
that value.

The string editor also supports these attributes:

minfields

controls the minimum number of fields that will be displayed for a multi-valued attribute

maxfields

controls the maximum number of fields that can be entered for a multi-valued attribute
(if the Directory has more values in the attribute, they will always be displayed)

fields

the same as setting minfields and maxfields to the same value.

D.10.21 stringtable editor

This allows very long lists of strings to be edited conveniently in a table-based layout.
Double-clicking on a row or pressing the Edit... button allows a string to be edited. The
Add... button allows a new value to be added, and the Remove button deletes the selected
value.

The editor supports this attribute:

vfill

indicates if the editor should fill the form (so the scrollbar that appears scrolls the
editor, not the form). Values of this XML attribute must be either "yes" or "no", the
default is "no".

D.10.22 subtreespec editor

This allows viewing and editing a subtree specification, which is used on subentries to
control the area of the DIT that is affected by that subentry.

D.10.23 Template icons

Sodium displays an icon next to each entry in the hierarchical tree view, and also next to
each named template in the Add wizard. A number of icons are pre-installed, and it is
possible to use additional icons.

Each icon should be a 16 pixel by 16 pixel PNG file (with optional alpha channel), and
should be stored in either (ETCDIR)/sodium/dit-icons/ or (SHAREDIR)/sodium/dit-icons/.

Customising Sodium

286M-Vault Administration Guide

Normally one icon is used for each specific template or form, however it is possible to
configure a template to use multiple icons. If the name of the icon in the template contains
a %s the lowercased value of the RDN will be substituted into the filename.

For example, if an organization template specified an icon of org_%s.png the icon
org_acme.png would be drawn next to o=ACME and the icon org_isode.png would be
drawn next to o=Isode.

D.11 ‘Add’ templates

Normally the same template is used for adding a new entry as for editing an existing one.
However, it is also possible to specify one or more “add” templates which are used only
for adding entries. “Add” templates normally show only a small number of selected fields
targeted at a particular application, and the fields may be pre-initialized with values.

The form-references in a template specification apply to both “add” and “edit” operations
by default. However, it is possible to mark some or all of the form-references to apply to
just one operation or the other with the "use=" parameter.

• With <form use="add" ref=...> the referenced form is only used for adding new
entries, and is omitted when the template is used for editing an entry.

• With <form use="edit" ref=...> the referenced form is only used for editing
existing entries, and is omitted when the template is used for adding an entry.

Normally there is only one template for a particular keyclass match. So by adding "use="
parameters, this template can be adapted to give a separate “add” template, i.e. a different
set of forms to use when adding. If more than one “add” template is required, then this can
be configured by inserting additional templates after the first template, using the same
keyclass parameter as the first. These additional templates are used only when a new entry
is being added, and appear in the Add below... or Add another... template list. This allows
the user to select from a number of templates pre-initialized for different situations, for
example: “Accounts Person”, “Sales Person”, etc.

To include initial values, the forms used for “add” templates should use the "init=..."
parameter in the relevant <editor> elements. These initial values are only used when a
new entry is added, never for editing.

There are two example “add” templates included in the default templates shipped with
Sodium: see Example pre-initialized form: Person for Accounts at the end of the list.

Customising Sodium

287M-Vault Administration Guide

Appendix E Advanced Configuration
Once a Directory Server has been set up, you may wish to configure various attributes
using a command line scripting interface, such as Tcldish. This section describes the various
attributes and entries which can be configured.

The Directory Server configuration is held in a subtree starting at cn=config. This subtree
is only visible to suitably authenticated server managers.

E.1 Core Configuration

The main entry holding the configuration of the Directory Server is at cn=core, cn=config.
It uses a structural objectClass of isodeDSAConfiguration. Some auxiliary object classes
are also used.

Note: Many of these attributes can be configured using M-Vault Console.

The following attributes are mandatory:

cn
The value must be core.

presentationAddress
This holds the server’s presentation address.

isodeDSAName
This holds the server’s DN. The entry at the given DN is not required to exist.

The remainder of the attributes are optional.

E.1.1 Administrative Limits

The following attributes configure administrative limits applied to list and search operations:

adminSizeLimit
A single-valued NumericString attribute. Its value is the maximum number of entries
to return in response to a list or search. The default value is 200.

adminTimeLimit
A single-valued NumericString attribute. This value is the maximum elapsed time,
in seconds, within which the results of a list or search request must be returned. If the
time limit is exceeded, some of the results are returned with an error message. The
default value is 120.

minSearchLevel
A single-valued NumericString of the minimum DN height for a base object of a
subtree search (e.g. the root is 0, top-level DNs are 1). If absent, there is no limit on
how high in the tree a search may be started.

adminLookthroughLimit
A single-valued NumericString attribute. Its value is the maximum number of entries
to be considered when determining candidates for a list or search. It should be greater
than the adminSizeLimit value, if present. The default value is 5000.

isodeRequireSignedModify
A single-valued Boolean attribute. If its value is true, then any modification requests
which are not in the form of signed modifications will be rejected.

Advanced Configuration

288M-Vault Administration Guide

isodeServiceName
A single-valued CaseExactString attribute. If present, its value gives the service name
used when decrypting passphrases in the various pphr files (if they have been
encrypted).

E.1.2 Encrypting pphr files

M-Vault uses files to obtain passphrases for PKCS#12 files used for various purposes.
These may be encrypted (though the key is itself stored on disk).

The service key can be created using the command line tool (SBINDIR)/spassmgt:

 % spassmgt set isode.dsa

(A name other than isode.dsa may be used, provided the attribute isodeServiceName is
changed suitably.)

The tool will prompt for a passphrase (16 characters minimum, and must contain at least
three out of uppercase, lowercase, numeric digits and punctuation).

On Unix systems, you need to run this command as whatever userid the M-Vault process
is using.

Passphrase files can then be encrypted using the (SBINDIR)/spasscrypt command-line
tool:

 % spasscrypt -e -s isode.dsa -f /var/isode/d3-db/ocsp.pphr

which will encrypt the contents of /var/isode/d3-db/ocsp.pphr using the service key for
isode.dsa.

(Files may be decrypted using -d instead of -e.)

E.1.3 X.509 Strong Authentication

The following attributes configure X.509 strong authentication:

dsaStrongAuthCertificate
A multi-valued attribute with CaseExactString syntax. This gives the pathnames of
additional DER-encoded files with certificates to use as additional certificates during
verification. These certificates are not trusted; they have the same status as certificates
retrieved from LDAP in that they may be included in certification paths during path
discovery. This attribute allows certificates to be available which might not otherwise
be found by LDAP lookup, perhaps because their Subject name does not match the
entry they are in or because they are not present in the referenced LDAP Directory or
because LDAP lookup is not configured.

dsaStrongAuthTrustAnchor
A multi-valued attribute with CaseExactString syntax. This gives the pathnames of
additional DER-encoded files with certificates to use as additional trust anchors for
verification of received strong authentication credentials. (The verifier will always use
any self-issued certificates in the PKCS#12 file as trust anchors. This attribute may
be used to add further trust anchors.)

Advanced Configuration

289M-Vault Administration Guide

dsaStrongAuthCheckCRLs
A single-valued attribute with Boolean syntax. If TRUE, revocation status will be
checked for received strong authentication credentials for the whole certification path
constructed.

isodeDAPIncludeCertificationPath
A single-valued attribute with Boolean syntax. If TRUE, then in DAP bind responses
and (if configured) DAP signed responses the full certification path will be sent over
protocol (that is, the certificates other than any self-signed certificates from the server's
PKCS#12 file).

isodeDSPIncludeCertificationPath
A single-valued attribute with Boolean syntax. If TRUE, then in DSP bind arguments,
responses, and (if configured) signed operations and responses the full certification
path will be sent over protocol (that is, the certificates other than any self-signed
certificates from the server's PKCS#12 file).

isodeDISPIncludeCertificationPath
A single-valued attribute with Boolean syntax. If TRUE, then in DISP bind arguments,
responses, and (if configured) signed operations and responses the full certification
path will be sent over protocol (that is, the certificates other than any self-signed
certificates from the server's PKCS#12 file).

isodeDAPStrongTokenExpiry
A single-valued attribute with NumericString syntax. This gives the expiry lifetime
for DAP bind responses (also signed DAP responses). The default is 900 (15 minutes).

isodeDSPStrongTokenExpiry
A single-valued attribute with NumericString syntax. This gives the expiry lifetime
for DSP bind responses (also signed DSP responses). The default is 900 (15 minutes).

isodeDISPStrongTokenExpiry
A single-valued attribute with NumericString syntax. This gives the expiry lifetime
for DISP bind responses (also signed DISP responses). The default is 900 (15 minutes).

dsaStrongAuthCheckLeaf
A single-valued attribute with Boolean syntax. If TRUE, revocation status will be
checked for received strong authentication credentials for the leaf certificate.

dsaStrongAuthOCSPnonce
A single-valued attribute with Boolean syntax. If TRUE, OCSP requests will be made
with the nonce extension.

dsaStrongAuthOCSPuri
A single-valued attribute with caseexactstring syntax. This gives a URI (http or https)
that will be used for OCSP requests.

dsaStrongAuthOCSPresponder
A single-valued attribute with caseexactstring syntax. This gives the filename of a
DER-encoded certificate that will be trusted as a signer of OCSP responses.

dsaStrongAuthLookupAvoidOCSPConfigured
A single-valued attribute with Boolean syntax. If set to TRUE then
dsaStrongAuthOCSPuri will not be used.

dsaStrongAuthLookupAvoidOCSPURI
A single-valued attribute with Boolean syntax. If set to TRUE then URIs from certificate
extensions will not be used for OCSP.

dsaStrongAuthLookupAvoidCRLConfigured
A single-valued attribute with Boolean syntax. If set to TRUE then CRLs will not be
retrieved from the configured LDAP server.

dsaStrongAuthLookupAvoidCRLURI
A single-valued attribute with Boolean syntax. If set to TRUE then CRLs will not be
retrieved from URIs in CRL or ARL Distribution Point extensions, or from freshestCRL
extensions.

Advanced Configuration

290M-Vault Administration Guide

dsaStrongAuthLookupAvoidCertConfigured
A single-valued attribute with Boolean syntax. If set to TRUE then certificates will not
be specifically sought from the configured LDAP server. (If we're retrieving CRLs
then certificates will be retrieved regardless.)

dsaStrongAuthLookupAvoidCertURI
A single-valued attribute with Boolean syntax. If set to TRUE then certificates will not
be retrieved from URIs in extensions.

dsaStrongAuthLookupAvoidFreshestCRL
A single-valued attribute with Boolean syntax. If set to TRUE then FreshestCRL
extensions are ignored.

dsaStrongAuthLookupAvoidOCSPHTTPGET
A single-valued attribute with Boolean syntax. If set to TRUE then HTTP GET is not
used for OCSP requests (normally it is used if the encoded request is small); instead,
HTTP POST is always used.

dsaStrongAuthLDAPhost
A single-valued attribute with CaseExactString syntax. This gives the host name or
IP address for the LDAP host that the Directory server will use for looking up additional
certificates and CRLs for verifying received strong authentication credentials.

dsaStrongAuthLDAPport
A single-valued attribute with Integer syntax. This gives the port to use for looking
up additional certificates and CRLs for verifying received strong authentication
credentials. If not present, the default 389 will be used.

dsaStrongAuthP12file
A single-valued attribute with CaseExactString syntax. This gives the pathname
relative to the Directory’s base directory of a PKCS#12 file that the Directory Server
will use for strong authentication. The user certificate in the PKCS#12 file must have
a Subject that matches the value of isodeDSAName.

dsaStrongAuthPPHRfile
A single-valued attribute with CaseExactString syntax. This gives the pathname
relative to the Directory’s base directory of a file containing the passphrase for the
PKCS#12 file.

E.1.4 TLS

The following attributes configure TLS:

tlsDontTrustIdentities
Single-valued attribute with Boolean syntax. If set to TRUE, then any self-signed
certificates in TLS identities will not be trusted. The default behaviour is that such
certificates are trusted.

tlsCheckCRLs
Single-valued attribute with Boolean syntax. If TRUE, revocation status will be checked
for received credentials when performing TLS authentication for the whole certification
path constructed.

tlsCheckLeaf
Single-valued attribute with Boolean syntax. If TRUE, revocation status will be checked
for received credentials when performing TLS authentication for the leaf certificate.

tlsOCSPnonce
A single-valued attribute with Boolean syntax. If TRUE, OCSP requests will be made
with the nonce extension.

tlsOCSPuri
A single-valued attribute with caseexactstring syntax. This gives a URI (http or https)
that will be used for OCSP requests.

Advanced Configuration

291M-Vault Administration Guide

tlsOCSPresponder
A single-valued attribute with caseexactstring syntax. This gives the filename of a
DER-encoded certificate that will be trusted as a signer of OCSP responses.

tlsLookupAvoidOCSPConfigured
A single-valued attribute with Boolean syntax. If set to TRUE then tlsOCSPuri will
not be used.

tlsLookupAvoidOCSPURI
A single-valued attribute with Boolean syntax. If set to TRUE then URIs from certificate
extensions will not be used for OCSP.

tlsLookupAvoidCRLConfigured
A single-valued attribute with Boolean syntax. If set to TRUE then CRLs will not be
retrieved from the configured LDAP server.

tlsLookupAvoidCRLURI
A single-valued attribute with Boolean syntax. If set to TRUE then CRLs will not be
retrieved from URIs in CRL or ARL Distribution Point extensions, or from freshestCRL
extensions.

tlsLookupAvoidCertConfigured
A single-valued attribute with Boolean syntax. If set to TRUE then certificates will not
be specifically sought from the configured LDAP server. (If we're retrieving CRLs
then certificates will be retrieved regardless.)

tlsLookupAvoidCertURI
A single-valued attribute with Boolean syntax. If set to TRUE then certificates will not
be retrieved from URIs in extensions.

tlsLookupAvoidFreshestCRL
A single-valued attribute with Boolean syntax. If set to TRUE then FreshestCRL
extensions are ignored.

tlsLookupAvoidOCSPHTTPGET
A single-valued attribute with Boolean syntax. If set to TRUE then HTTP GET is not
used for OCSP requests (normally it is used if the encoded request is small); instead,
HTTP POST is always used.

tlsLookupAvoidNative
A single-valued attribute with Boolean syntax. If set to TRUE then native lookup is
not used.

tlsLDAPhost
Single-valued attribute with CaseExactString syntax. It holds the name of the Directory
Server to be used for certificate verification performed during TLS authentication.

tlsLDAPport
Single-valued attribute with Integer syntax. It holds the port number of the Directory
Server to use for certificate verification performed during TLS authentication. The
value is ignored unless tlsLDAPhost is set. If not present, the default value of 389
will be used.

tlsCertificate
Multi-valued attribute with CaseExactString syntax. This gives the pathnames of
additional DER-encoded files with certificates to use as additional certificates for
verification during TLS authentication. These certificates are not trusted; they have
the same status as certificates retrieved from LDAP in that they may be included in
certification paths during path discovery. This attribute allows certificates to be available
which might not otherwise be found by LDAP lookup, perhaps because their Subject
name does match the entry they are in, because they are not present in the referenced
LDAP Directory or because LDAP lookup is not configured.

tlsTrustAnchor
Multi-valued attribute with CaseExactString syntax. It holds the names of trust anchors
used by the Directory Server for certificate verification during TLS authentication.

Advanced Configuration

292M-Vault Administration Guide

tlsVerifyDepth
Single-valued attribute with Integer syntax. It configures the depth of validation of
client certificates (if they are validated at all, see tlsVerifyClient). For example a value
of 2 means that a client may present a certificate that is signed by an intermediate CA,
which was issued by one of the CAs in tlsCaCertificateFile, provided the client also
presents the intermediate CA’s certificate.

tlsCaCertificateFile
Single-valued attribute with CaseExactString syntax. It holds the pathname of a file
containing a series of CA certificates in PEM format. Any presented client certificates
will be validated against these certificates if tlsVerifyClient is set to optional or require.

tlsVerifyClient
Single-valued attribute with NamedBitstring syntax. It permits configuration of client
certificate verification. The following names (with bit numbers in parentheses) may
be used:

(0)none

(1)optional

(2)require

(3)optionalNoCa

The meanings are described in Section 5.7.2.2, “Client authentication”.

tlsSessionCacheTimeout
Single-valued attribute with Integer syntax. It configures how long TLS session
information is held in the session cache against the possibility of session resumption
by the same client; this may avoid a full handshake sequence.

• A value greater than 0 is the time-out period in seconds

• A value of 0 implies no caching (i.e. always perform a full handshake)

• A value of -1 implies indefinite caching (not recommended)

• The value of -2 is reserved for future use

• All other negative values are ignored.

If not configured, the default time-out is 86400 seconds (i.e. 24 hours).

tlsSupportFlags
This attribute uses the NamedBitString syntax. It permits configuration of certain
aspects of the TLS support. The following names (with bit numbers in parentheses)
may be used:

(0)rejectSSLv2Hello

(1)suppressSSLv3

(2)suppressTLSv1

(6)disableTLSRollBackBug

(7)singleDHUse

(8)disableBlindRSA

(9)workaroundMicrosoftSessID

(10)workaroundNetscapeChallenge

(11)workaroundNetscapeReuseCipherChange

(12)workaroundSSLRef2ReuseCertType

(13)workaroundMicrosoftBigSSLv3Buffer

(14)workaroundMSIESSLv2RSAPadding

(15)workaroundSSLeay080ClientDH

(16)workaroundTLSD5

Advanced Configuration

293M-Vault Administration Guide

(17)workaroundTLSBlockPadding

(18)workaroundDontInsertEmptyFragments

None of these bits are set by default. The meanings are as follows:

rejectSSLv2Hello

If set, the Directory Server never negotiates SSLv2.

suppressSSLv3

If set, the Directory Server never negotiates SSLv3.

suppressTLSv1

If set, the Directory Server never negotiates TLSv1.

disableTLSRollBackBug

Disable version rollback attack detection.

singleDHUse

Always create a new key when using temporary/ephemeral DH parameters.

If a bit is not explicitly set, it is assumed to be unset. Thus the default configuration
is to support SSLv3 and TLSv1, to accept SSLv2Hello, to reject empty Hello messages
and oversized records, and not to ignore a premature EOF at the record level.

Note: There are also a set of workarounds (prefixed with “workaround”),
which may help when using particular client software. The OpenSSL
documentation suggests they they should not reduce security if set, but
otherwise offers almost no information on them.

tlsRandomSeedPath
Single-valued attribute with CaseExactString syntax. The value is the name of the
file which contains the input for the random number generator. If no filename is
configured, the name seed.dat is used.

tlsDHParamsPath
Single-valued attribute with CaseExactString syntax. The value is the name of the
file which contains the generated Diffie-Hellman parameters for DHE/ADH use. If
the named file does not exist or does not contain DH parameters, precomputed
parameters are used.

If no filename is configured, DHE/ADH may still be used, although only precomputed
parameters are used.

tlsKeyInfoPaths
Single-valued attribute with CaseExactString syntax. The value is the name of the
directory containing PKCS#12 information for the Directory Server. If a passphrase
is required for use with the PKCS#12 file, then the passphrase must be placed in a file
called key.pphr. The passphrase file is read as an ordinary text file. A single trailing
linebreak is permitted in the file, and ignored.

tlsConfiguredCipherSuites
Multi-valued attribute with Integer syntax. Values are integers corresponding to
individual TLS cipher suites; if this is not set, no cipher suites are configured. Values
of this attribute should only be set using M-Vault Console in order to ensure that the
configuration is valid. See Section 5.7.3, “Supported TLS cipher suites” for further
guidance.

E.1.5 Shadowing

The following attributes configure shadowing (DISP) behaviour:

shadowPrunePeriod
The value of this NumericString attribute is the length of time (in secs) to keep changes
in changelog.db that have been shadowed to consumer Directory Servers.

Advanced Configuration

294M-Vault Administration Guide

dsaShadowFailureDelay
The value of this NumericString attribute is the minimum delay between retrying
unsuccessful shadow updates (in secs).

dsaShadowOnChangeDelay
The value of this NumericString attribute is the minimum delay between last change
and update in an On Change shadow agreement (in secs).

dsaShadowRetryDelay
The value of this NumericString attribute is the minimum delay between successful
shadow updates (in secs).

dsaShadowOnChangeHoldOpen
A single-valued Boolean attribute. If TRUE in an On Change shadow agreement, the
connection remains open between consecutive shadow updates.

E.1.6 Chaining

The following attribute configure chaining behaviour:

isodeChainPolicy
A single-valued CaseIgnoreList attribute, used to specify the desired ordering of
protocols used when chaining. The items in the list can be ldap or dsp. This example
shows a server configured to try DSP first, then LDAP chaining:

isodeChainPolicy: dsp$ldap

dspIdleTimeOut
A single-valued Integer attribute used to time out idle DSP and LDAP chained
connections. Idle connections will be closed. The default value is 1800 seconds.

dspGarbageCollectInterval
A single-valued Integer attribute used to periodically check DSP and LDAP chained
connections. The default value is 15 seconds.

dspBindTimeLimit
A single-valued Integer attribute used to time out slow new DSP and LDAP chained
connections. The default is 60 seconds.

dspOperationTimeLimit
A single-valued Integer attribute used to time out slow operations on DSP and LDAP
chained connections. The default is 60 seconds.

E.1.7 Logging

The following attributes configure logging:

dsaLogTailor
A single-valued CaseExactString attribute used to hold the XML representation of
the server’s log configuration.

isodeAuditEnable
A single-valued Boolean syntax used to enable audit logging. The default is TRUE.

E.1.8 Miscellaneous

The following attributes configure miscellaneous settings:

superiorKnowledge
A single-valued AccessPoint93 attribute that holds the superior reference of this
Directory Server, if it does not master a naming context immediately below the root
of the DIT.

Advanced Configuration

295M-Vault Administration Guide

authTimestamps
A single-valued Boolean attribute that if set to TRUE records the time a user last
authenticated in a special authTimestamp operational attribute on their entry. The
default is FALSE.

manager
A multi-valued DN attribute that if set specifies the DN of the Directory Server “super
user”, a user who is not subject to any access controls.

userPassword
This attribute uses the Password syntax and it is used as the password for the optional
“super user” specified in the manager attribute.

E.1.9 SASL

The following attributes configure SASL:

saslAvailableMechanisms
A single-valued attribute with CaseIgnorePrintableString syntax. The value is a
space-separated list of enabled SASL mechanisms. If this is not set, no SASL
mechanisms are enabled. For the list of supported mechanisms, see Table 5.1, “SASL
mechanisms”.

isodeSASLAllowAnonymous
A single-valued attribute with Boolean syntax. If the value is TRUE then the
“ANONYMOUS” SASL mechanism may be used. Normally this would not be used
as LDAP directly supports anonymous binds.

isodeSASLAllowPlain
A single-valued attribute with Boolean syntax. If the value is TRUE, the SASL
mechanisms using plaintext (i.e. “PLAIN” and “LOGIN”) are permitted on connections
without TLS confidentiality.

isodeSASLMinSSF
A single-valued Integer attribute that is used to enforce a minimum level of security
layer. Not all SASL mechanisms support security layers. The value approximately
indicates the strength of the symmetric key used to encrypt the layer, e.g. 56. The
default of 0 means security layers are effectively optional.

isodeSASLMaxSSF
A single-valued Integer attribute that is used to enforce a maximum level of security
layer. Not all SASL mechanisms support security layers. The value approximately
indicates the strength of the symmetric key used to encrypt the layer, e.g. 56. Note
that values over 56 will be trated as 56.

Note: Licensing may reduce the effective maximum value.

isodeSASLGenericRule
Selects which rule should be used by the Directory Server to map userids for generic
SASL mechanisms into DNs. It is a single-valued Integer attribute, and has a default
value of 3.

isodeSASLGenericUsers
A single-valued attribute of DN syntax that is used in mapping rule 0 for generic SASL
mechanisms. It holds the RDN sequence in between the entry and the dc portion of
the constructed DN. The default is no RDN sequence.

isodeSASLGenericFullMatchAttr
Defines the attribute in user entries that contains the complete userid for generic SASL
mechanisms. It is a single-valued OID, and if not set defaults to mail.

isodeSASLGenericUserMatchAttr
A single-valued attribute of OID syntax that defines the attribute used when searching
for the user portion of a generic SASL userid. This is used in mapping rule 1 for generic
SASL mechanisms. If not set it defaults to cn.

Advanced Configuration

296M-Vault Administration Guide

isodeSASLGenericDomainMatchAttr
A single-valued attribute of OID syntax that defines the attribute used when searching
for the domain portion of a generic SASL userid. This is used in mapping rules 1 and
2 for generic SASL mechanisms. If not set it defaults to cn.

isodeSASLGenericNamingAttr
A single-valued attribute of OID syntax that defines the attribute used when forming
an RDN from the user portion of a generic SASL userid. This is used in mapping rules
0 and 1 for generic SASL mechanisms. If not set it defaults to cn.

isodeSASLGenericBase
A single-valued attribute of DN syntax that defines the base entry for all the generic
SASL mapping rules.

isodeSASLGenericDomain
A single-valued attribute of CaseIgnoreString syntax that is used for the domain part
of SASL userids that have no explicit domain. The generic mapping rules 1 and 2 will
also skip a search for domains if this domain is being used.

isodeSASLGSSAPIRule
Selects which rule should be used by the Directory Server to map userids for the
GSSAPI SASL mechanism into DNs. It is a single-valued Integer attribute, and has
a default value of 3.

isodeSASLGSSAPIUsers
A single-valued attribute of DN syntax that is used in mapping rule 0 for the GSSAPI
SASL mechanism. It holds the RDN sequence in between the entry and the dc portion
of the constructed DN. The default is no RDN sequence.

isodeSASLGSSAPIFullMatchAttr
Defines the attribute in user entries that contains the complete userid for the GSSAPI
SASL mechanism. It is a single-valued OID, and if not set defaults to
krbPrincipalName.

isodeSASLGSSAPIUserMatchAttr
A single-valued attribute of OID syntax that defines the attribute used when searching
for the user portion of a GSSAPI SASL userid. This is used in mapping rule 1 for the
GSSAPI SASL mechanism. If not set it defaults to cn.

isodeSASLGSSAPIRealmMatchAttr
A single-valued attribute of OID syntax that defines the attribute used when searching
for the realm portion of a GSSAPI SASL userid. This is used in mapping rules 1 and
2 for the GSSAPI SASL mechanism. If not set it defaults to cn.

isodeSASLGSSAPINamingAttr
A single-valued attribute of OID syntax that defines the attribute used when forming
an RDN from the user portion of a GSSAPI SASL userid. This is used in mapping
rules 0 and 1 for the GSSAPI SASL mechanism. If not set it defaults to cn.

isodeSASLGSSAPIBase
A single-valued attribute of DN syntax that defines the base entry for all the GSSAPI
SASL mapping rules.

isodeSASLGSSAPIRealm
A single-valued attribute of CaseIgnoreString syntax that is used for the realm part
of GSSAPI SASL userids that have no explicit realm. The GSSAPI mapping rules 1
and 2 will also skip a search for realms if this realm is being used.

E.1.10 Security Labels and Clearance

The following attributes configure security labels and clearance access:

sioClearanceCatalog
A single-valued CaseExactString attribute that holds the XML catalog of security
clearances.

Advanced Configuration

297M-Vault Administration Guide

sioLabelCatalog
A single-valued CaseExactString attribute that holds the XML catalog of security
labels.

securityLabels
A multi-valued SecurityLabel attribute that is used to restrict the clearances that may
be used when binding to the Directory Server. For example, all users must have
clearance granting access to “SECRET” information.

clearance
A multi-valued Clearance attribute that is used to restrict the security labels that can
be used on other entries. For example, all objects must have “SECRET” labels.

rbacSecurityPolicy
A single-valued CaseExactString attribute that holds an XML representation of a
Security Policy Information File “SPIF” as defined by SDN 801c.

E.1.11 Password Policy

If you have a Directory Server configured to use a formal password policy, it will have an
additional objectClass value of pwdPolicy and have the following mandatory attribute:

pwdAttribute
A single-valued OID attribute, which contains the attribute type to which the password
policy settings are applied. Currently this is ignored, and userPassword is assumed.

The following attributes are optional:

pwdSafeModify
A single-valued Boolean attribute, which defines if the user must provide (TRUE) the
previous password in a Modify operation. The default is FALSE.

pwdCheckQuality
A single-valued attribute with Integer syntax which controls how the Directory Server
checks user-provided passwords.

• 0 (default) means the server does not check them

• 1 means they are checked but problems encountered during the check are ignored

• 2 means they are checked and problems encountered during the check cause a failure

pwdMinLength
A single-valued attribute with Integer syntax. If pwdCheckQuality is non-zero, this
attribute forces all passwords to have a certain minimum length.

pwdMinAge
A single-valued attribute with Integer syntax, defining the minimum password age in
seconds. This prevents passwords from being changed too rapidly.

pwdMaxAge
A single-valued attribute with Integer syntax, defining the maximum password age
in seconds. This forces the user to change their password over time.

pwdInHistory
A single-valued attribute with Integer syntax, defining the number of previous
passwords to retain. It is an error to change a password to one in the password history.

pwdExpireWarning
A single-valued attribute with Integer syntax, defining the time in seconds before a
password is due to expire that a password warning is issued.

pwdGraceAuthNLimit
A single-valued attribute with Integer syntax, defining the number of “grace”
authentications allowed before an account is locked out.

Advanced Configuration

298M-Vault Administration Guide

pwdLockout
A single-valued attribute with Boolean syntax. If TRUE accounts will be locked out
when their passwords expire or have been entered incorrectly too often. The default
is FALSE.

pwdLockoutDuration
A single-valued attribute with Integer syntax, defining the duration in seconds that an
account is locked out.

pwdMaxFailure
A single-valued attribute with Integer syntax, defining the number of consecutive
authentication failures allowed before the account is locked out.

pwdFailureCountInterval
A single-valued attribute with Integer syntax, defining the length of time to remember
failed authentication attempts.

pwdMustChange
A single-valued attribute with Boolean syntax. If TRUE then users must change their
passwords after they are set/reset by an administrator. The default is FALSE.

pwdAllowUserChange
A single-valued attribute with Boolean syntax. If TRUE (the default) users are allowed
to change their own passwords.

E.1.12 Password Hashing

If the Directory Server has an objectClass attribute which contains a value of
pwdHashSchemePolicy, the following additional attribute may be configured:

pwdConfiguredSchemeGenerators
A single-valued attribute with CaseIgnoreString syntax. The value must be one of
the Root DSE’s pwdAvailableSchemeGenerators values, and defines the algorithm
used to hash plaintext values being stored in userPassword attributes.

E.1.13 Example

The following example shows the core configuration of a Directory Server cn=DSA,
o=Example supporting TLS, SASL, and X.509 authentication. Note the long value for
presentationAddress is split over multiple lines.

dn: cn=core,cn=config
cn: core
objectClass: isodeCommonAuthInfo
objectClass: isodeDSAConfiguration
objectClass: top
dsaStrongAuthCheckCRLs: TRUE
dsaStrongAuthLDAPhost: localhost
dsaStrongAuthLDAPport: 389
dsaStrongAuthP12file: ssl/rsa.p12
dsaStrongAuthPPHRfile: ssl/rsa.p12.pphr
isodeChainPolicy: dsp$ldap
isodeDSAName: cn=DSA,o=Example
isodeDSPAuthModeISend: 0
isodeDSPAuthModesIExpect: 0
isodeLDAPAuthModesIExpect: 2
isodeLDAPAuthModesIExpect: 4
isodeSASLAllowAnonymous: FALSE
isodeSASLAllowPlain: TRUE
isodeSASLGenericBase: o=Users,o=Example
isodeSASLGenericDomainMatchAttr: commonName
isodeSASLGenericFullMatchAttr: rfc822Mailbox
isodeSASLGenericNamingAttr: commonName
isodeSASLGenericRule: 3

Advanced Configuration

299M-Vault Administration Guide

isodeSASLGenericUserMatchAttr: commonName
presentationAddress: URI+0000+URL+itot://x500.example.com|
 URI+0001+URL+ldap://x500.example.com|
 URI+0001+URL+ldaps://x500.example.com
saslAvailableMechanisms: DIGEST-MD5 LOGIN PLAIN SCRAM-SHA-1
tlsCheckCRLs: TRUE
tlsDontTrustIdentities: FALSE
tlsKeyInfoPaths: ssl
tlsLDAPhost: localhost
tlsLDAPport: 389
tlsRandomSeedPath: seed.dat
tlsSessionCacheTimeout: 300
tlsSupportFlags: (rejectSSLv2Hello $ workaroundAll)
tlsVerifyClient: (optional)
tlsVerifyDepth: 5

E.2 Peer Configuration

Configuration specific to each peer Directory Server used in chaining and shadowing is
held in separate entries under cn=config. The entries have an objectClass of
isodePeerDSA.

The following attributes are mandatory:

isodeDSAName
A single-valued DN attribute that holds the name of the peer Directory Server.

presentationAddress
This holds the peer Directory Server’s presentation address.

E.2.1 Shadowing

Configuration of DISP (shadowing) with a peer Directory Server is held in the peer-specific
entry. An additional objectClass value of isodePeerAuthInfo is used.

The following optional attributes can be used:

isodeDISPPasswordIExpect
A single-valued Password attribute that holds the password that the peer Directory
Server should send when simple DISP authentication is used.

isodeDISPAuthModesIExpect
A single-valued Integer attribute describing the form of DISP authentication that is
expected from the peer Directory Server. The values are described in Section 5.2.1,
“Establishing identity”. If simple authentication is expected for example:

isodeDISPAuthModeIExpect: 2
isodeDISPPasswordIExpect: theirpassword

isodeDISPPasswordISend
A single-valued Password attribute that holds the password that should be sent to the
peer Directory Server when simple DISP authentication is used.

isodeDISPAuthModeISend
A single-valued Integer attribute describing the form of DISP authentication that this
Directory Server will send. The values are described in Section 5.2.1, “Establishing
identity”. To use simple authentication for example:

Advanced Configuration

300M-Vault Administration Guide

isodeDISPAuthModeISend: 2
isodeDISPPasswordISend: mypassword

isodeDISPSignSrShaUp
A single-valued Boolean attribute that controls if update requests are signed. The
default is FALSE.

isodeDISPSignShaUp
A single-valued Boolean attribute that controls if shadow updates are signed. The
default is FALSE.

isodeDISPSignCoShaUp
A single-valued Boolean attribute that controls if coordinate operations are signed.
The default is FALSE.

E.2.2 Chaining

Configuration of DSP (chaining) with a peer Directory Server is held in the peer-specific
entry. An additional objectClass value of isodePeerAuthInfo is used.

The following optional attributes can be used:

isodeDSPTrusted
A single-valued Boolean attribute that controls whether DSP operations chained
through this peer Directory Server are “trusted” or not. Untrusted operations are all
degraded by the Directory Server to have no effective authentication level.

isodeDSPDegradeStrong
A single-valued Boolean attribute that controls (TRUE) whether to degrade strong
authenticated operations to an effective simple authentication level. Note that
isodeDSPDegradeSimple may then further degrade the authentication level. The
default is FALSE.

isodeDSPDegradeSimple
A single-valued Boolean attribute that controls (TRUE) whether to degrade simple
authenticated operations to an effective anonymous authentication level. The default
is FALSE.

isodeDSPPasswordIExpect
A single-valued Password attribute that holds the password that the peer Directory
Server should send when simple DSP authentication is used.

isodeDSPAuthModesIExpect
A single-valued Integer attribute describing the form of DSP authentication that is
expected from the peer Directory Server. The values are described in Section 5.2.1,
“Establishing identity”. If simple authentication is expected for example:

isodeDSPAuthModeIExpect: 2
isodeDSPPasswordIExpect: theirpassword

isodeDSPPasswordISend
A single-valued Password attribute that holds the password that should be sent to the
peer Directory Server when simple DSP authentication is used.

isodeDSPAuthModeISend
A single-valued Integer attribute describing the form of authentication that this
Directory Server will send. The values are described in Section 5.2.1, “Establishing
identity”. To use simple authentication for example:

isodeDSPAuthModeISend: 2
isodeDSPPasswordISend: mypassword

Advanced Configuration

301M-Vault Administration Guide

isodeDSPSignRes
A single-valued Boolean attribute that controls if DSP results are signed. The default
is FALSE.

isodeDSPSignArg
A single-valued Boolean attribute that controls if DSP operation arguments are signed.
The default is FALSE.

E.2.3 Example

The following entry shows an entry used with DSP and DISP to the Directory Server
cn=DSA,o=MNN.com. Note escaping is required to use a DN in an RDN, and the long
presentationAddress is split onto a second line.

dn: isodeDSAName=cn\=DSA\,o\=MNN.com,cn=config
objectClass: isodePeerAuthInfo
objectClass: isodePeerDSA
objectClass: top
isodeDISPAuthModeISend: 1
isodeDISPAuthModesIExpect: 1
isodeDSAName: cn=DSA,o=MNN.com
isodeDSPAuthModeISend: 2
isodeDSPAuthModesIExpect: 2
isodeDSPPasswordIExpect: theirpassword
isodeDSPPasswordISend: mypassword
presentationAddress: URI+0000+URL+itot://x500.mnn.com|
 URI+0001+URL+ldap://x500.mnn.com

E.3 Shadow Agreements

Shadow agreement configurations are held in entries directly below the peer entry for the
Directory Server being shadowed with.

The entries use a structural objectClass of isodeSupplierAgreement or
isodeConsumerAgreement as appropriate. These share a superclass of
isodeShadowAgreement.

All agreements have the following mandatory attributes:

isodeAgreementID
A single-valued Integer attribute which holds the unique agreement ID with this peer.
The configuration entry is named with this attribute and value.

isodeAgreementVersion
A single-valued Integer attribute which holds the version of the agreement.

isodeShadowPrefix
A single-valued DN attribute which holds the prefix of the shadowed area.

All agreements have the following optional attributes:

isodeAgreementEnabled
A single-valued Boolean attribute which can be used to enable and disable the
agreement.

isodeSupplierInitiated
A single-valued Boolean attribute which indicates if the agreement is supplier-initiated
(TRUE) or consumer-initiated.

Advanced Configuration

302M-Vault Administration Guide

isodeOnChange
A single-valued Boolean attribute which indicates if the agreement is on-change
(TRUE) or periodic.

isodeBeginTime
A single-valued GeneralizedTime attribute which holds the start time of the agreement.
The default is to start immediately.

isodeUpdateInterval
A single-valued Integer attribute which holds the gap between normal periodic updates.

isodeWindowSize
A single-valued Integer attribute which holds the portion of the update interval during
which the update will attempted.

isodeOtherTimes
A single-valued Boolean attribute which indicates if a periodic agreement can be
updated outside of the normal schedule.

E.3.1 Supplier Agreements

Supplier agreements have the following additional optional attributes:

isodeShadowArea
A single-valued SubtreeSpecification attribute which describes which portion of the
DIT underneath the isodeShadowPrefix is shadowed to the consumer.

isodeAttributeSelection
A multi-valued AttributeSelection attribute which configures the attributes to include
and exclude from shadowing by objectClass. If absent, all attributes are shadowed.

isodeForbidAutoTotal
A single-valued Boolean attribute which prevents the supplier from sending an
automatic total update. This may be desirable if the update is expected to be very large.

isodeForbidModifyDN
A single-valued Boolean attribute which prevents updates from include ModifyDN
changes. This may be desirable if the update is being consumed (directly or indirectly)
by Directory Servers that do not fully support ModifyDN.

E.3.2 Consumer Agreements

Consumer agreements have the following additional mandatory attribute:

subtreeReference
A single-valued DN attribute which specifies the GDAM that the shadowed data will
be stored in.

Consumer agreements have the following additional optional attributes:

isodeSupplierIsMaster
A single-valued Boolean attribute which indicates that the supplying Directory Server
also masters the data. This is used to optimize the chaining of write operations.

isodePermitIncrReplay
A single-valued Boolean attribute which indicates if certain errors in incremental
updates are permitted. This can improve robustness at the possible expense of data
inconsistency.

E.3.3 Agreement State

The current state of each shadow agreement is held in an entry underneath each agreement
configuration entry. Most attributes are read-only.

The entries have an RDN of cn=state, and a structural objectClass of isodeSupplierState
or isodeConsumerState as appropriate. These share a superclass of isodeAgreementState.

Advanced Configuration

303M-Vault Administration Guide

All agreement states have the following mandatory attribute:

cn
A single-valued CaseIgnoreString attribute which has the value state.

All agreement states have the following optional attributes:

isodeLastUpdateTime
A single-valued GeneralizedTime attribute which holds the time of the last change
made.

isodeLastSuccessTime
A single-valued GeneralizedTime attribute which holds the time of the last successful
update.

isodeLastErrorTime
A single-valued GeneralizedTime attribute which the time of the last unsuccessful
update.

isodeShadowError
A single-valued Integer attribute containing a code describing the last unsuccessful
update.

0No error

1Unknown error

2Remote DSA is unavailable

3Remote DSA’s credentials are rejected

4This DSA’s credentials were rejected

5Internal error

6Total updates are forbidden

7A bilateral agreement is needed

8No suitable credentials could be used

9A strong bind could not be used

10The agreement ID is invalid

11The agreement is inactive

12Invalid information was received

13An unsupported update strategy was used

14The remote DSA is missing a previously
sent update

15A full update is required

16The DSA is unwilling to perform

17The agreement’s timing is “unsuitable”

18The update has already been received

19Invalid sequencing was detected

20Insufficient resources (disk/memory) were
available

isodeForcedUpdateTime
A single-valued GeneralizedTime attribute, which may be modified to force an update
at that particular time.

isodeForcedUpdateTotal
A single-valued Boolean attribute which alters whether the update forced by setting
isodeForcedUpdateTime will be a total update or not. The default is to send an
incremental update.

Advanced Configuration

304M-Vault Administration Guide

E.4 In-memory GDAM

Each in-memory database used for storing mastered or shadowed information is represented
by a GDAM entry directly below the cn=config entry. The database entries have a structural
objectClass of imgdam.

Each database of this type has the following mandatory attributes:

cn
A single-valued CaseIgnoreString attribute which holds the database name.

diskDatabaseDirectory
A single-valued CaseExactString attribute which holds the path to the directory
holding the database files. For example:

diskDatabaseDirectory: C:\\Isode\\my-dsa\\gdam2

Each database has the following optional attributes:

description
A multi-valued CaseIgnoreString attribute that can be used to hold some textual
description of the database contents. For example:

description: Shadowed data from Singapore

isodeMinFreeDisk
A single-valued Integer attribute that holds the minimum amount of disk space (in
megabytes) that must be available if directory write operations are to be permitted.
The default is 1.

indexBuild
A single-valued Boolean attribute that is changed when index building should be
started.

isodeMaxSnapshots
A single-valued Integer attribute. Its value is the number of most recent snapshots that
should be retained for this GDAM. The default value is 3.

isodeMaxLoadThreads
A single-valued Integer attribute. Its value is the number of threads, and thus degree
of parallelism, that is permitted when loading data from disk to memory at server start
up. The default value is the number of CPUs counted on the running system.

isodeMaxEntriesPerFile
A single-valued Integer attribute. Its value is the maximum number of entries per
data-file in a snapshot. The lower this number the more data files will be required to
build a complete snapshot and the greater the level of parallelism permitted when
loading data at startup. The default value is 50000.

isodeCheckpointSchedule
A multi-valued Integer attribute. Its values control the specific times at which
checkpointing is performed and so up-to-date snapshots produced. The integer values
provided indicate the number of seconds after midnight (local time) at which a
checkpoint should be invoked. The default is for checkpointing to take place one hour
after midnight local time, i.e. a value of 3600.

Advanced Configuration

305M-Vault Administration Guide

isodeCheckpointInterval
A single-valued Integer attribute. Its value controls the interval between checkpoints.
No default value. Any value provided here overrides any checkpoint schedule
configured in isodeCheckpointSchedule.

E.4.1 GDAM Files

Each GDAM is stored in a separate filesystem directory, specified by the configuration
entry’s diskDatabaseDirectory attribute.

The database consists of three sub-directories:

config
This sub-directory contains the index configuration. Specifically this is recorded in
the file indexes.ddf.

snapshots
This sub-directory contains snapshots produced after a checkpoint. Snapshots are
contained in a child directory named by a hexadecimal encoded 64-bit change sequence
number.

changelog
This sub-directory contains a set of files containing the set of changes made to the
directory data since the most recent snapshot. Changes are also retained if they are
required for shadowing.

E.4.2 Attribute indexes

The index search types described in Section 4.6.4.1, “Index search types” make use of
additional databases. The administrator can configure one or more attributes to be specially
indexed for presence, equality, approximate and substring matches.

Attribute indexes are covered in detail in Section 4.6.1, “Creating a database”.

You can create and delete attribute indexes from the Indexes sub-page of the Databases
page in M-Vault Console (see Section 4.6.1, “Creating a database”), or using dmish. This
creates and deletes indexes in the background while the Directory Server is running.

Alternatively, you may wish to create indexes while the Directory Server is not running
and without using M-Vault Console. For this purpose use the dsimkindex utility.

E.4.2.1 The dsimkindex utility

The command line for this utility is in the form:

dsimkindex [-x] [-q]
[attribute [:types]...]

Where:

-x

specifies that the indexes are to be removed instead of created.

-q

only report errors.

attribute

is the attribute to index, which if not specified is cn.

:types

is optional, and specifies the type(s) of indexes to be created. If included, the list
consists of a colon plus one or more of the following letters without intervening spaces:

Advanced Configuration

306M-Vault Administration Guide

p – build a presence index

e – build an equality index

a – build an approximate index

s – build a substring index.

The default is es, i.e. build equality and substring indexes.

The following example makes an approximate and a substring index for the cn attribute:

$ dsimkindex cn:as

The dsimkindex utility must be run in the GDAM directory. You cannot use dsimkindex
while the Directory Server is running. If you wish to create indexes while the Directory
Server is running, use either M-Vault Console or dmish.

E.5 Root DSE

The root DSE contains a number of read-only attributes that provide information about the
Directory Server.

myAccessPoint
A single-valued AccessPoint93 attribute that holds the name and presentation address
of the Directory Server. This value is derived from the presentationAddress attribute
on cn=core, cn=config.

superiorKnowledge
A single-valued AccessPoint93 attribute that holds the superior reference of this
Directory Server, if it does not master a naming context immediately below the root
of the DIT. This value is derived from the superiorKnowledge attribute on cn=core,
cn=config

supportedLDAPVersion
A multi-valued Integer attribute that holds the LDAP versions supported, as per RFC
4512.

supportedSASLMechanisms
A multi-valued IA5String attribute that holds the names of the currently installed and
enabled SASL mechanisms, as per RFC 4512. To change the values, modify
saslAvailableMechanisms on the cn=core, cn=config entry.

LDAP clients should read this attribute before selecting a mechanism to use in a SASL
bind.

saslInstalledMechanisms
A multi-valued IA5String attribute that holds the names of the currently installed (but
not necessarily enabled) SASL mechanisms.

namingContexts
A multi-valued DN attribute listing all the mastered and shadowed naming contexts
held on this Directory Server, as per RFC 4512.

subschemaSubentry
A multi-valued DN attribute listing all the subschema subentries held on this Directory
Server. See Section C.6, “Reading the subschema from a client”.

vendorName
The string “Isode Limited”, in accordance with RFC 3045.

Advanced Configuration

307M-Vault Administration Guide

dsaVersion
A single-valued CaseIgnoreString attribute holding the version of the running
Directory Server.

changeLog
A single-valued DN attribute holding the DN of the parent of the entries comprising
this Directory Server’s LDAP changelog.

strongAuthImplementationVersion
This single-valued Integer attribute gives the implementation version, indicating the
way to configure strong authentication in the Directory Server. The current value is
1.

strongAuthActive
This single-valued Boolean attribute indicates whether strong authentication has been
configured (TRUE) and is working (principally whether there is a usable PKCS#12 and
passphrase file).

strongAuthTrustAnchor
This multi-valued ASN.1 attribute gives the trust anchors (certificates) being used by
the Directory Server for certificate verification.

tlsImplementationVersion
A single-valued Integer attribute representing the current Isode implementation
supported by the server. The current value is 3.

tlsAvailableCipherSuites
A multi-valued Integer attribute showing the set of TLS cipher suites which may be
configured on this server.

supportedExtension
This multi-valued OID attribute lists the OIDs of supported LDAPv3 protocol
extensions, as per RFC 4512. Values currently include:

1.3.6.1.4.1.1466.20037

The “Start TLS” extended operation is supported, as defined by RFC 4513. This
will only be true when TLS has been correctly configured.

1.3.6.1.4.1.4203.1.11.1

The “Password Modify” extended operation is supported, as defined by RFC
3062.

1.3.6.1.4.1.4203.1.11.3

The “Who Am I” extended operation is supported, as defined by RFC 4532.

supportedControl
This multi-valued OID attribute lists the OIDs of supported LDAPv3 controls, as per
RFC 4512. Values currently include:

1.3.6.1.4.1.4203.1.10.1

The “Subentries” control is supported, as defined by RFC 3672.

1.3.6.1.4.1.42.2.27.8.5.1

The “Password Policy” request control is supported.

1.2.840.113556.1.4.473

The “Server-Side Sorting” control is supported, as defined by RFC 2891.

1.2.840.113556.1.4.319

The “Simple Paged Results” control is supported, as defined by RFC 2696.

2.16.840.1.113730.3.4.2

The “ManageDsaIT” control is supported, as defined by RFC 3296.

supportedFeatures
This multi-valued OID attribute lists the OIDs of supported LDAPv3 features, as per
RFC 4512. Values currently include:

1.3.6.1.4.1.4203.1.5.1

All operational attributes can be requested in searches, defined by RFC 3673.

Advanced Configuration

308M-Vault Administration Guide

1.3.6.1.4.1.4203.1.5.2

Searches can request all attributes from specified object classes, defined by RFC
4529.

1.3.6.1.4.1.4203.1.5.3

True/False filters are supported in searches, as defined by RFC 4526.

pwdAvailableSchemeGenerators
This multi-valued CaseIgnoreString attribute lists the names of the hashing algorithms
that can be configured in the pwdConfiguredSchemeGenerators attribute. See
Section C.2.25, “Password/EncryptedPassword” for the possible values.

E.5.1 Example

An example of reading some attributes from the root DSE:

dn:
myAccessPoint: (cn=DSA,o=Example Corp #
 URI+0000+URL+itot:/x500.example.com|
 URI+0001+URL+ldap://x500.example.com|
 URI+0001+URL+ldaps://x500.example.com)
namingContexts: o=Example Corp
supportedExtension: 1.3.6.1.4.1.1466.20037
supportedExtension: 1.3.6.1.4.1.4203.1.11.1
supportedExtension: 1.3.6.1.4.1.4203.1.11.3
supportedFeatures: 1.3.6.1.4.1.4203.1.5.1
supportedFeatures: 1.3.6.1.4.1.4203.1.5.2
supportedFeatures: 1.3.6.1.4.1.4203.1.5.3
supportedControl: 1.2.840.113556.1.4.319
supportedControl: 1.2.840.113556.1.4.473
supportedControl: 1.3.6.1.4.1.42.2.27.8.5.1
supportedControl: 1.3.6.1.4.1.4203.1.10.1
supportedControl: 2.16.840.1.113730.3.4.2
supportedSASLMechanisms: DIGEST-MD5
supportedSASLMechanisms: LOGIN
supportedSASLMechanisms: PLAIN
supportedSASLMechanisms: SCRAM-SHA-1
supportedLDAPVersion: 2
supportedLDAPVersion: 3
vendorName: Isode Limited
pwdAvailableSchemeGenerators: SCRAM-SHA-1
pwdAvailableSchemeGenerators: SHA2
pwdAvailableSchemeGenerators: SSHA2
pwdAvailableSchemeGenerators: SHA
pwdAvailableSchemeGenerators: SSHA
pwdAvailableSchemeGenerators: MD5
pwdAvailableSchemeGenerators: SMD5
pwdAvailableSchemeGenerators: CRYPT

Advanced Configuration

309M-Vault Administration Guide

Appendix F Running as an OS Service
This section describes how to configure and run Operating System services.

F.1 Linux services

M-Vault uses a systemd template unit file for service management, so that a single unit
file can be used to manage multiple DSA instances. The unit file relies on DSAs being
stored in the /var/isode directory. The directory containing the DSA is then used to name
the service as follows:

isode-dsa@<directory-name>

Thus if a DSA is stored in /var/isode/dsa-db then the systemd service name would be:

isode-dsa@dsa-db

The DSA service would be started with:

systemctl start isode-dsa@dsa-db

F.2 Windows services

Windows supports a class of application known as a service. Applications intended to be
run as services are written to conform to the interface rules of the Windows Service Control
Manager (which is part of the kernel). Many of the parts of the Windows operating system
itself are implemented as services. Services can run in the absence of, and independently
of, logged-on users.

Service applications can run either under a specific account, or by default under the
LocalSystem account (that is, with system privileges).

Installation of an application as a service causes a new entry to be created in the Windows
Registry. The entry contains such information as the service's name, dependencies,
description, and its location in the file system.

Services can be started either automatically when the system is started, or on demand, via
either the Control Panel or by any other application which uses the appropriate API for
communication with the Service Control Manager.

F.2.1 The Isode Service Configuration tool

Although services can be started and stopped (and to some degree modified) using the
Services applet within the Windows Control Panel, this does not provide all of the
functionality required by Isode services. The Isode Service Configuration tool is therefore
provided. This gives the ability to start, stop, add, delete and modify services, and to
configure inter-service dependencies.

Running as an OS Service

310M-Vault Administration Guide

F.2.1.1 Service dependencies

In some cases, an Isode service will have dependencies on one or more other services. For
example, the M-Link xmpp service may make use of an M-Vault Server on the same
machine for configuration information, in which case the Directory service will need to be
started before the xmpp service. This dependency information is stored as part of the
Windows Service configuration, but may be viewed or modified by the Isode Service
Configuration tool.

By specifying appropriate service dependencies, you can control in which order services
are started.

F.2.1.2 Using the Isode Service Configuration tool

The Isode Service Configuration tool is used to:

• View, add, delete and modify services.

• Configure service dependencies.

• Start and stop services.

To start the Isode Service Configuration tool, run it as the Windows Administrator from
within the Isode group of the Start menu.

F.2.1.3 Installing services

Isode services are typically installed either by the appropriate management tool (for example,
M-Vault Console creates a Windows service with the appropriate configuration when you
create a local Directory Server), or by the Isode Service Configuration tool itself.

The Install Isode Services option on the Actions will invoke a wizard that allows you to
add Isode services corresponding to the packages you have installed.

The example below installs the M-Link services.

On the first page of the wizard, select M-Link to configure.

Figure F.1. Service to install

Running as an OS Service

311M-Vault Administration Guide

On the next page of the wizard, deselect the isode.mbox.msarchived (Isode M-Link
Message Archiving server) service if archiving is not required.

Figure F.2. Services not required

Press Finish to create Windows services for M-Link.

F.2.1.4 Viewing services

When Isode Service Configuration is started, a list of the installed Isode services, together
with their current status (running or stopped) is displayed, as shown below.

Figure F.3. Isode Service Configuration main window

Running as an OS Service

312M-Vault Administration Guide

To update the status of the services to reflect the latest status, use the Refresh button.

To display a list of all of the services installed on your machine, de-select the Isode Services
Only option on the File menu.

You can view the configuration details for any by selecting it and pressing the Edit button.

Figure F.4. Edit service

• The Executable path contains the executable filename, and is configured by whichever
Isode application created the service.

• The Description field, which can contain any useful text, although the description of
each service should be unique. A default description will normally be provided; for
example, in the case of a Directory Server, the description will be the name of the bind
profile used by M-Vault Console to manage the server.

• Command line arguments and Service arguments are configured when the service is
created.

• The Startup Type for Isode services could be set to Manual or Automatic, see the
section called “Modifying service details”, below.

• Run under system account determines whether the service runs under the system
account, or another account specified in Run under this account and Password for
this account.

• Dependencies shows the (possibly empty) list of other services on which this service
depends.

F.2.1.5 Modifying service details

Parameters for a service are typically configured by the Isode application which creates
the service, and so in most cases you do not need to change any of the service settings.
Typically the only values which you may want to change are:

• The Description field: a default description will normally be provided; for example, in
the case of a Directory Server, the description will be the name of the bind profile used
by M-Vault Console to manage the server. You can change this to another value without
affecting the service's operation.

• The Startup Type: for example, you may wish to use a value of Automatic for services
that should always be run when the system starts. In the case of automatic startup, you

Running as an OS Service

313M-Vault Administration Guide

may want to specify service dependencies, to ensure that services are started in the correct
order.

• Dependencies allows you to specify that a given service depends on one or more other
services. If you are displaying Isode Services Only, then the list of services shown in
the combo box will only include Isode services. If you want to make a service dependent
on a non-Isode service, then de-select the Isode Services Only on the File menu before
invoking the Edit Service dialog.

F.2.1.6 Deleting a service

To delete a service from the list, select it in the main window shown in Figure F.3, “Isode
Service Configuration main window” and click on the Remove button. You will be asked
to confirm the deletion before it is performed.

It is also possible to disable a service without deleting it by changing the Startup type in
the window shown in Figure F.4, “Edit service” to Disabled. This may be useful if a service
is not required temporarily.

F.2.1.7 Adding a service

It is possible to add a new service, which may be useful if you wish to configure multiple
instances of a given server and want to distinguish them with separate service names.
However, typically this is unnecessary since Isode applications will add their own services
and use unique names; for example, M-Vault Console creates a uniquely named service
for each Directory Server that is installed on the local system.

To add a new service, use the Add button in the main window shown in Figure F.3, “Isode
Service Configuration main window”.

This will display the window shown below.

Figure F.5. Add new service

The contents of this dialog are the same as that for the Edit Service dialog shown in
Figure F.5, “Add new service”, except in this case you need to provide the Service name.
The dialog allows you to configure any service, although only service names beginning
with the prefix isode. will be displayed when the Isode Services Only option is selected.

Running as an OS Service

314M-Vault Administration Guide

F.2.1.8 Starting and stopping a service

To start a service, simply select the service from the list displayed in the main window
(Figure F.3, “Isode Service Configuration main window”) and press Start. If the service
is started successfully its status will be updated to running. Services can be stopped in a
similar manner using the Stop button.

It is possible to start all of the configured services by pressing the Start all button. Service
dependencies will be used to determine which order services are started. Similarly, the
Stop all button stops all of the running configured services .

F.2.1.9 Use of Windows registry

Most of the information shown in the Edit Service dialog in Figure F.5, “Add new service”
corresponds with that maintained by Windows in its Service Configuration tool, and so it
is possible to use that tool to obtain information about a configured Isode service. The
exception is the Service arguments parameter, which provides a way to provide extra
information to an Isode service when it starts up. Any Service Arguments are stored in
the Windows Registry under an Isode-specific key, located in:

HKEY_LOCAL_MACHINE\Isode\Isode\SERVICES

Running as an OS Service

315M-Vault Administration Guide

Appendix G Tcldish – the Tcldish and Ltcldish
DUAs
This chapter describes the DAP and LDAP Directory management DUAs called Tcldish
and Ltcldish.

Note: The general term, Tcldish, is used throughout this chapter to refer to both,
as they have much in common. Where text applies to only one of the DUAs, the
name of the DUA will be explicitly stated.

Tcldish is not intended as a general DUA. Its purpose is to provide data managers and more
experienced users with a command line interface to the Directory. Tcldish commands allow
you to move around, view and modify parts of the DIT, write and execute scripts and
manage Directory Servers.

The interface provided by Tcldish is similar to that provided by a Unix shell or Windows
Command Prompt. In Tcldish you can move up and down the DIT in much the same way
as you move up and down a file store, and the DIT location for a Directory operation in
Tcldish can be specified as a relative or absolute “pathname”, in the same way as file store
locations are specified.

G.1 Tcl and attribute syntax quoting

The management DUAs are based on Tcl (Tool Command Language), and include a
complete Tcl interpreter, which has been extended to include commands for accessing the
Directory. You can use the Tcl scripting language to customize the DUA environment to
suit your own requirements. However, before using or customizing the DUAs, it is advisable
to have a reasonable understanding of Tcl and the quoting rules of both Tcl and of the
attribute syntaxes being used.

The purpose of all textual quoting is to ensure that the appropriate representation of an
underlying value is presented unambiguously to the system. This applies at several levels,
and consequently may require successive quoting rules to be applied to ensure the correct
underlying value is achieved. For example, when presenting a DN which contains an RDN
component containing a UCS-2 string, consideration must be given to quoting the UCS-2
value itself (BMPstring syntax quoting), then the value within the DN (DN syntax quoting),
and finally any Tcl quoting required.

This section gives a brief introduction to the subject of quoting for both Tcl and Attribute
value syntaxes.

G.1.1 Tcl quoting

When using a Tcl-based tool such as Tcldish, you should be familiar with the Tcl language
quoting rules when including special Tcl characters, such as double quotes ", braces {}
and back slashes \, in Tcldish command arguments. Take care also when values contain
white space characters which may require Tcl quoting.

G.1.2 Attribute syntax quoting

Some values of attributes are either not directly expressible (for example, because they
contain non-ASCII characters such as “ü”) or would be capable of more than one

Tcldish – the Tcldish and Ltcldish DUAs

316M-Vault Administration Guide

interpretation (for example, a comma ‘,’ in a DN might be part of an RDN value or might
delimit an RDN).

Syntax quoting is used to provide a resolution for both of these issues. Different attribute
syntaxes may use different quoting mechanisms.

Tcldish makes a distinction between DNs representing absolute positions in the DIT and
DNs representing positions in the DIT relative to the current position, when those values
are passed as DN arguments to Tcldish commands. Absolute DNs are specified by the use
of surrounding angle-brackets “<DN>”.

For more information about quoting used by particular attribute syntaxes, see Appendix C,
Attribute Syntaxes.

Figure G.1, “Flow of quote processing” shows both the flow of quote processing in a
Tcldish context on the left hand side, and how to derive an appropriately quoted value for
use in Tcldish on the right hand side.

G.1.3 Examples of the application of quoting

Consider the Tcldish representation of the absolute Distinguished Name cn=Five,o=Widget
Ltd,c=GB.

The following string might be passed as an argument to a Tcldish command:

{<cn=Five,o=Widget Ltd,c=GB>}

Here the braces, which are special Tcl characters, prevent the Tcl interpreter from processing
the enclosed text, which protects the embedded spaces. At a lower level, the angled brackets
tell the Distinguished Name syntax handler that this is an absolute Distinguished Name.

Another representation of the same value, replacing the braces with double quotation marks,
is:

"<cn=Five,o=Widget Ltd,c=GB>"

Tcldish – the Tcldish and Ltcldish DUAs

317M-Vault Administration Guide

Figure G.1. Flow of quote processing

string presented to Tcl

string presented to attribute syntax parser

underlying value

Attribute syntax
parser removes
syntax quoting

Add attribute
syntax quoting

Tcl parser
removes Tcl

quoting
Add Tcl quoting

How string is
processed

How to get
correct quoted
representation

The next example shows how to enter a value which contains a special character. Take,
for instance, the back slash “\” character, which is special to Tcl, the DN syntax parser and
the CaseIgnoreString syntax parser. The absolute DN cn=Section\Five,o=Widget
Ltd,c=GB, where the “\” is part of the commonName attribute value, could be passed as
an argument to a Tcldish command as follows:

{<cn=Section\\\\Five,o=Widget Ltd,c=GB>}

where the special character “\” needs to be escaped twice in a compounded fashion: once
for the CaseIgnoreString syntax associated with commonName attribute, and once for
the DN syntax.

Another method of presenting the same value using Tcl double quotes is

"<cn=Section\\\\\\\\Five,o=Widget Ltd,c=GB>"

In TclDish, double quoting does not offer as much protection as braces, so yet another level
of escaping is required. Without any Tcl quoting, the value would appear to be two separate
strings, delimited by the space. A specific peer entry (see Section 7.2, “Connection details
for Directory Servers”) describing the remote Directory Server peer
cn=Remote,o=otherOrg\,Inc,c=XX (where the organisation name is “otherOrg,Inc”) below
this Directory Server’s cn=config entry requires several levels of quoting:

Tcldish – the Tcldish and Ltcldish DUAs

318M-Vault Administration Guide

{<isodeDSAName=cn\=Remote\,o\=otherOrg\\\,Inc\,c\=XX,cn=config>}

This involves two layers of DN syntax quoting, since isodeDSAName has a DN-valued
syntax. Consequently, the inner DN value’s commas, equal signs and escapes need to be
escaped in order to avoid confusing parsing of the outer DN. Note also that the inner DN
is not surrounded by angle brackets, since it is not of itself a value handled by Tcldish as
a DN.

The following examples show how to protect non ASCII characters in Tcldish arguments.
(Section C.1, “Character sets and matching rules” describes how to specify different
character sets in the Directory). Here an absolute DN with the value
cn=Section\Fünf,o=Widget Ltd,c=GB is entered as a UCS-2 string. Using Tcldish braces
it could be entered as:

{<cn={UCS-2}Section\\\\F\\00fcnf,o=Widget Ltd,c=GB>}

where {UCS-2} is the character set flag. The back slash separator “\” and hex code for the
UCS-2 character “00fc” are protected in Tcldish by the braces, but need escaping for the
DN syntax handler. Using double quotation marks, the DN would need to be entered as:

"<cn={UCS-2}Section\\\\\\\\F\\\\00fcnf,o=Widget Ltd,c=GB>"

Note: Windows-style pathnames (such as C:\folder\file) may also require Tcl
quoting, because the \ character is the Tcl escape character. This results in the use
of doubled backslash separators; for example C:\\folder\\file. Alternatively, the
pathname could be specified as C:/folder/file.

For more information on programming in Tcl and Tk, see Practical Programming in Tcl
and Tk: Book and CD-ROM by Brent B. Welch and published by Prentice Hall, ISBN:
0136168302.

G.2 Tailoring Tcldish and Ltcldish

There are three tailoring files which control the operation of Tcldish:

• the system-wide X.500 tailor file (SHAREDIR)/dsaptailor

• a user’s private Directory tailor file, .duarc in his home directory

• a user’s customizable scripting file, .tcldishrc in his home directory

Similarly, Ltcldish is tailored by:

• the system-wide LDAP user agent tailor file (SHAREDIR)/ldaptailor

• a user’s private Directory tailor file .duarc in his home directory

• a user’s customizable scripting file .tcldishrc in his home directory

With both DUAs, some of the values in the system wide tailoring files can be overridden
by values in the user’s local .duarc and .tcldishrc. The following sections describe how
the management DUAs make use of the tailoring files.

Tcldish – the Tcldish and Ltcldish DUAs

319M-Vault Administration Guide

G.2.1 Use of the dsaptailor file by tcldish

Although individual Tcldish DUAs are likely to have their own tailoring file, they should
also have access to the system wide (ETCDIR)/dsaptailor and (SHAREDIR)/dsaptailor
files. On start up, Tcldish references dsaptailor for various default values including:

• The local name and Presentation Address of the Directory Server to contact initially.
This information is given in the dsa_address entry. For example:

dsa_address uk "\"X500\"/Internet=dsa.widget.com+19999"

This declares that the Directory Server, nicknamed uk, is contacted by calling the network
address of dsa.widget.com at TCP/IP port 19999. The nickname can be used in tcldish
to specify the name of the Directory Server to contact.

The dsa_address is also used when Tcldish is required to bind to a Directory Server
using strong credentials. In this case, the nickname is the distinguished name of the
Directory Server to be bound to, for example:

dsa_address "<cn=Strong DSA,o=foo,c=GB>" "\"X500\"/Internet=dsa.widget.com+19999"

• The location in the DIT to point to initially. This is given in the local_DIT entry, for
example:

local_DIT "<ou=Research,o=Widget Ltd,c=GB>"

If there is more than one dsa_address entry in dsaptailor, the first one listed is used to
supply the address of the default Directory Server to contact.

G.2.2 Use of the ldaptailor file by Ltcldish

Ltcldish uses the (ETCDIR)/ldaptailor and (SHAREDIR)/ldaptailor files in much the same
way as Tcldish uses the dsaptailor file. However, the only values in the ldaptailor file, are:

• The nickname and Presentation Address of the Directory Server to contact initially. The
latter is given in the dsa_address entry in the form of an LDAP URL:

ldap://host:port/

Note: The trailing slash is required.

To access the Directory Server at Widget Ltd using LDAP, the dsa_address entry in
the ldaptailor file might be:

dsa_address ukldap ldap://dsa-host.widget.com:19996/

In this example, the nickname of the Directory Server is ukldap, and it is contacted by
calling the network address of dsa-host.widget.com at TCP/IP port 19996. The
nickname can be used in Ltcldish to specify the name of the Directory Server to contact.

• The location in the DIT to point to initially. This is given in the local_DIT entry, for
example:

Tcldish – the Tcldish and Ltcldish DUAs

320M-Vault Administration Guide

local_DIT "<ou=Research,o=Widget Ltd,c=GB>"

The files which define the LDAP attribute and object class definitions, ldapv3oid.at and
ldapv3oid.oc, will be accessed automatically in (SHAREDIR).

G.2.3 User’s .duarc file

When a user starts Tcldish or Ltcldish, his .duarc file, located in his home directory, is
read in order to obtain user authentication information and user specified options.

Entries in this file should take the format:

option: value

Note: Command line arguments passed to Tcldish override values set by any
command specifier lines, which in turn override values set by service and
notype lines.

The following options and values are recognized. Every option is case-insensitive:

username: Distinguished Name

Normally the absolute Distinguished Name of the user to be recognized when binding.

Note: The presence of values for username and password in .duarc does
not automatically cause dbind to use simple authentication.

To bind with simple authentication the -simple flag must be included in one of the
following:

• The command line to start Tcldish or Ltcldish, if you want to bind to a Directory
Server on start up.

• The dbind command line if you are binding to a Directory Server after Tcldish or
Ltcldish has been started.

• The command specifier line: bind: -simple in the .duarc file. This sets the default
authentication mode for dbind to simple.

password: password

The password to be recognized when binding. For this reason care should be taken to
ensure that a users’s .duarc file is not publicly readable. Alternatively, this option can
be omitted, in which case the password may be prompted for. This latter method is
more secure as it does not reveal the password on the command line.

service: service control flags

A space separated list of default service control flags and values (see Section G.4.3,
“Service control flags”).

local_DIT: Distinguished Name

The Distinguished Name indicates the point in the DIT from which navigation is to
begin. The value given here will override the local_DIT value in the dsaptailor or
ldaptailor file, if specified. If no DIT starting point is given in any file, the starting
point will be ROOT.

notype: attribute types

This is a space separated list of attributes which will not be displayed by dshowentry
unless explicitly called for.

Tcldish – the Tcldish and Ltcldish DUAs

321M-Vault Administration Guide

nickname: Distinguished Name

This option allows you to assign an alternative name to a Distinguished Name object.
For example:

sales: <cn=Tom Smith,ou=Sales,o=Widget Ltd,c=GB>

assigns the nickname sales to cn=Tom Smith,ou=Sales,o=Widget Ltd,c=GB.

The nickname, sales, can then be used in arguments which require the Distinguished
Name. For example:

dshowentry sales

will show the entry for Tom Smith.

command specifier: command flags

This entry sets the default flags required for a specific type of Tcldish command. There
may be several entries of this type, one for each type of command. command specifier
refers to the type of operation, and can take one of the values listed in Table G.1,
“Mapping of command specifiers to commands”. command flags is a space separated
list of default flags to be used with the Tcldish command(s) corresponding to the
command specifier. For example, the following entry:

showname: -ufn

means that dshowname and dpwd, which are equivalent commands, will always be
invoked with -ufn set.

Table G.1. Mapping of command specifiers to commands

Corresponding Tcldish Command(s)Command Specifier

daddadd

dbindbind

dbulkcleanbulkclean

dbulkloadbulkload

dcdmoveto

dmoveto

dcomparecompare

ddeletedelete

drm

dlistlist

dls

dmodmodify

dmodify

dmodifyrdnmodifyrdn

dmodrdn

dshownameshowname

dpwd

dsearchsearch

dshowshowentry

dshowentry

Tcldish – the Tcldish and Ltcldish DUAs

322M-Vault Administration Guide

Corresponding Tcldish Command(s)Command Specifier

dstatusstatus

dunbindunbind

dquit

quit

An example of a .duarc file might be:

username: <cn=DSA Manager,cn=DSA,ou=Research,o=Widget Ltd,c=GB>
password: dgt_93vx
bind: -simple
unbind: -noquit
service: -sizelimit 15
notype: userPassword
list: -sizelimit 30

This example would have the following effect:

• A default of 15 is set for the service control flag, -sizelimit.

• Unless explicitly requested, userPassword attributes will not be displayed by
dshowentry.

• list is a command specifier line. The -sizelimit parameter for dlist and dls
commands will default to 30.

• unbind is a command specifier line. It sets the default action for the dunbind command
to -noquit, i.e. disconnect from the Directory Server, but do not exit Tcldish.

• bind is a command specifier line. It sets the default mode of authentication for dbind
to simple. If you then use dbind with no authentication flags explicitly set on the
command line, it will attempt to bind using simple authentication, and take the values
set in the .duarc file for username and password to validate this connection.

Caution: It is important to ensure that a user’s .duarc file is not publicly
readable, as it contains the user’s password.

G.2.4 The .tcldishrc tailoring file

A user’s .tcldishrc file should be located in his home directory, and can contain a user
defined Tcl script which is loaded when tcldish or Ltcldish are started. Any valid Tcl
commands may appear in this file. For example, you might wish to define a customization
for the command line prompt. The following example script would cause the current DIT
location to be displayed instead of the default prompt string:

set tcl_prompt1 {
 global tcldish_pwd
 if {![directory isbound]} {
 set name "not bound"
 } else {
 if [catch {_text_dn $tcldish_pwd} name] {
 set name "???"
 }
 }
 puts -nonewline "\[$name] TclDish% "
}

By default Tcldish simulates the Tcl shell program, tclsh, and attempts to invoke an
unrecognized command as a system program. This behaviour can be disabled by adding
the following command to the .tcldishrc

Tcldish – the Tcldish and Ltcldish DUAs

323M-Vault Administration Guide

file: set auto_noexec {}

G.3 Running Tcldish and Ltcldish

To start a Tcldish DUA, type:

tcldish [-noconnect] [-file filename] [dbind arguments]

To start an Ltcldish DUA, type:

ltcldish [-noconnect] [-file filename] [dbind arguments]

-noconnect

starts Tcldish without binding to a Directory Server.

dbind arguments

The arguments to the dbind command (see Section G.5.1, “dbind”) can be used on
the command line when starting Tcldish.

-file filename

directs Tcldish to interpret the Tcl script identified by filename on startup. The first
Directory related command in the script file must be to bind to the Directory.

The process of connecting, or binding, to the Directory takes place automatically when the
DUA is started. If no arguments are given, dbind will attempt to connect using the defaults
set in the dsaptailor/ldaptailor file (for dsa_address) and the .duarc file (for the bind
parameters).

The commands which you can use when Tcldish has been started are described in
Section G.4, “Command overview”. To exit Tcldish, type quit or use the dunbind
command (see Section G.5.2, “dunbind”).

To abandon a Tcldish operation, hold down the Control key and press c. Note that this is
not yet implemented for Ltcldish.

G.4 Command overview

The following sections describe the set of commands which the management DUAs provide.
Section G.5, “Commands for Directory operations” describes the commands for performing
common DAP and LDAP Directory operations, such as binding to the required Directory
Server, performing searches and modifying entries. Section G.6, “Other Tcldish commands”
describes some additional commands which do not map directly onto DAP or LDAP
operations, but which are useful for administration purposes. Section G.7, “Bulk data
utilities” describes the utilities provided for adding or modifying a large number of entries
all at once.

As LDAP provides a subset of DAP features, some of the commands and arguments (flags)
are not available when you are running ltcldish. These limitations are listed in Section G.4.1,
“Commands and flags not applicable to Ltcldish”.

Tcldish – the Tcldish and Ltcldish DUAs

324M-Vault Administration Guide

To avoid a conflict with built-in Tcl commands (for example, list), all Tcldish commands
are prefixed with the character d. In other respects, the commands emulate the equivalent
commands in the older dish DUA, except where noted. The following dish commands are
not supported by Tcldish: editentry, squid, fred, dsacontrol.

You can customize command names and flags by using Tcl to define appropriate aliases
in a .tcldishrc file. For example:

proc dls args { return [eval dlist $args] }

Most of the Tcldish commands support a number of flags which can be used to tailor the
behaviour of the command. To get a list of the flags supported by a command, type the
command name and the -help flag, for example:

dsearch -help

The full names of flags are used in the descriptions and examples. However, the shortest
unique name is sufficient to select a flag.

G.4.1 Commands and flags not applicable to Ltcldish

The following commands and flags are not currently available for the LDAP DUA, Ltcldish:

• The -edb read flag.

• The following service control flags:

-[no]preferchain

-[no]chaining

-[no]refer

-[dont]usecopy

-[no]localscope

-managedsait

-low

-medium

-high

• The -strong and -protected flags in bind

• The -modifyRightsRequest flag in dshowentry

• The dmanager command described in Section G.6.4, “dmanager”

G.4.2 How objects can be referenced

With nearly every command it is possible to supply the Distinguished Name (DN) of the
object to be referenced. In the syntax used to describe the commands this is represented
by:

object

Names in the Internet DN format and surrounded by angled brackets are taken to be absolute
Distinguished Names. Without angled brackets, the name is taken as being relative to the
current position in the DIT. The special name .. is used to mean “one level up” from the
current position.

If, for example, the current position is:

<ou=Sales,o=Widget Ltd,c=GB>

Tcldish – the Tcldish and Ltcldish DUAs

325M-Vault Administration Guide

The string sn=Smith describes the object, sn=Smith, which is relative to the current
position:

<sn=Smith,ou=Sales,o=Widget Ltd,c=GB>

Generally if the Distinguished Name contains spaces, it must be contained within quotes,
and these quotes must surround the entire argument containing spaces.

Objects can also be expressed using sequence reference numbers. As results returned by
search and list operations may be long, each resulting entry has a reference number printed
beside it. This number can then be used as the object in any of the calls to the Directory.

The dsequence command, described in Section G.6.1, “dsequence”, is used to name and
reset sequences, and to view sequence status details. The -sequence flag can be used with
the dsearch and dlist commands to store the results in named sequences.

G.4.3 Service control flags

The Tcldish commands described in Section G.5, “Commands for Directory operations”
map onto standard Directory operations (Read, Compare, List, Search, AddEntry,
RemoveEntry, ModifyEntry) and have additional flags to control the type of service
provided.

The flags recognized are listed below. Those applicable to both Tcldish and Ltcldish are:

-timelimit n

-notimelimit

-sizelimit n

-nosizelimit

-attributesizelimit n

-noattributesizelimit

-[dont]dereferencealias

The following are applicable to Tcldish only:

-[no]preferchain

-[no]chaining

-[no]refer

-[dont]usecopy

-[no]localscope

-managedsait

-low

-medium

-high

-timelimit n

Set the time limit to n seconds.

-notimelimit

No time limit specified. This is the default time limit.

-sizelimit n

Set the size limit to n entries. This can be increased up to the administrative limit
(typically 200) set in the Directory Server which holds the entries. The attributes which
hold the Directory Server administrative limits, adminSizeLimit, adminTimeLimit
and adminLookthroughLimit, are described in Section E.1.1, “Administrative Limits”.

Tcldish – the Tcldish and Ltcldish DUAs

326M-Vault Administration Guide

-nosizelimit

No size limit specified. This is the default size limit.

Note: Where there are a large number of entries, the number returned may
be restricted by the Directory Server administrative limit mentioned above.

-attributesizelimit n

This indicates the largest size of any attribute (type and all its values) that can be
included in returned entry information. The value n is taken to be the attribute’s size
in octets.

-noattributesizelimit

No size limit is set for returned attributes. This is the default attribute size limit.

-[dont]dereferencealias

(Do not) dereference aliases if found in the path of a query.

Note: Tcldish will not notify the user if an alias is de-referenced.

-[no]preferchain

Advise the Directory Server (not) to chain the operation if required. However, the
Directory Server is allowed to ignore the advice, and return a referral.

-[no]chaining

(Prohibit) Allow the use of chaining.

-[no]refer

(Do not) automatically follow referrals issued by the Directory Server.

-[dont]usecopy

(Prohibit) Allow the use of a shadowed copy of the data.

-[no]localscope

(Do not) limit operation to local scope as defined by X.500. The interpretation of this
flag is Directory Server dependent.

-managedsait

This flag enables an administrator to use Tcldish commands on objects in the Directory
Server’s own information tree, DSEs for example. This flag can only be used if you
are bound as the DSA Manager.

-low

Flag the query as low priority. In the M-Vault Server, operations at this priority will
give way to other operations more frequently.

-medium

Flag the query as medium priority. This is the default.

-high

This flag has two effects in the M-Vault Server. Non-local operations will return a
referral rather than requiring the Directory Server to open a new association for
chaining. Local operations at high priority will give way to others less frequently.

G.4.4 Read flags

The commands dshowentry, dmoveto and dsearch recognize the flags listed below.

-[no]type attribute-type

-[no]all

-[no]value

-[no]show

-[no]key

Tcldish – the Tcldish and Ltcldish DUAs

327M-Vault Administration Guide

-type

flag requests that only the given attributes are read from the Directory Server. -notype
does not necessarily prevent the attributes being read, but it does inhibit their display.

-all

flag requests that all attributes of an entry are read (default).

-value

flag reads the attribute value (this is the default). -novalue causes a read of the
attribute types only.

-show

flag is used to make the DUA show the requested attributes (this is the default for read,
but not for search).

-key

flag causes the attribute type (key) to be displayed when the value of an attribute is
returned (e.g. cn= is shown in front of a cn value).

G.5 Commands for Directory operations

This section defines all the Tcldish commands for standard Directory operations.

G.5.1 dbind

dbind [-call Directory Server nickname or address]
[-noauthentication]
[-simple -user Distinguished Name -password password]
[-protected] [-strong]

On startup (see Section G.3, “Running Tcldish and Ltcldish”), Tcldish will bind to the
default Directory Server defined in the system-wide (SHAREDIR)/dsaptailor or
(SHAREDIR)/ldaptailor file by issuing a dbind command. Binding to the default Directory
Server can be overridden by setting the -call flag on the command line:

-call Directory Server nickname or address

This flag can be used to connect to a Directory Server other than the default.
Directory Server nickname is the nickname assigned in the dsaptailor or
ldaptailor file to the required Directory Server (see Section G.2, “Tailoring Tcldish
and Ltcldish”). Alternatively, you can bind to a Directory Server not defined in the
tailor file by specifying address, the presentation address of the required Directory
Server.

If you do not specify a Directory Server with -call, and you are already bound to a
Directory Server, Tcldish will attempt to rebind to that Directory Server. If you are
not currently bound (at start up or after issuing a dunbind command) Tcldish will
contact the default Directory Server as set in the dsaptailor file.

The following examples show how the dbind command might be used:

• In Tcldish, this connects to the DAP Directory Server called dsa2. The dsaptailor
file holds the Presentation Address for this Directory Server. In Ltcldish, this connects
to an LDAP server called dsa2. The ldaptailor file holds the URL for this Directory
Server.

dbind -call dsa2

Tcldish – the Tcldish and Ltcldish DUAs

328M-Vault Administration Guide

• The following example shows how you can connect to a DAP Directory Server
which is not listed in the dsaptailor file:

dbind -call "Internet=x500.widget.com+19999"

• Similarly, the example below shows how you connect to an LDAP Server,
ldap.widget.com which is not listed in the ldaptailor file:

dbind -call ldap://ldap.widget.com:19389/

When connecting to the Directory, the user must be authenticated. The flags described
below control the level of authentication the DUA attempts to use. Table G.1, “Mapping
of command specifiers to commands” summarises the effect when various combinations
of these flags are set. dbind binds with no authentication if none of the flags below are set.

If the -user and -password flags are set, simple authentication is used, even if the
-simple flag is not set. If none of these flags are used and simple authentication is desired
(binding from information in the .duarc file, for example) then the -simple flag must be
set.

-noauthentication

This indicates the lowest level of authentication, that is, anonymous. The Directory
may respond with the message “inappropriate authentication”, which means a higher
level of authentication is required.

-simple

This is the next level of authentication. The Directory uses the values given for user
and password to authenticate the user. These values can be specified on the command
line via the -user and -password flags, in the .duarc file, or, in the case of password,
in answer to a prompt. See Table G.2, “Setting authentication levels using Tcldish”
for the different ways of setting simple authentication.

-user Distinguished Name

This is the Distinguished Name of the user, and is required together with a password
when binding to the Directory using simple authentication. If the -user flag is set but
the -simple flag is not, simple authentication is implied.

-password password

This is a textual password. Encrypted passwords are not supported. If simple
authentication is explicitly or implicitly requested, but no password is given in the
command line or in .duarc, you are prompted to enter one.

Caution: Starting Tcldish with the -password flag on a multi-user system
may reveal your password to other users; if they use the Unix ps system
command, for instance. However, this is not an issue if the password is
specified in the .duarc file, or given in answer to the password prompt.

-protected

(Tcldish only) This flag tells the DUA that all operations and results must be digitally
signed. It can only be used if the -strong flag is also specified.

-strong

(Tcldish only) This flag tells the DUA to send strong authentication credentials to the
Directory. Binding with strong authentication offers the highest level of security. When
using strong authentication, the -user flag flag specifies the dn of a certificate in the
user’s PKCS#12 file, and the -password flag specifies the passphrase necessary to
decrypt the PKCS#12 file. See Section 5.4, “Configuring the Directory for X.509”.

Tcldish – the Tcldish and Ltcldish DUAs

329M-Vault Administration Guide

Table G.2. Setting authentication levels using Tcldish

Comment-strong-password-user-simple-noauthenticationRequired auth level

Default when no flags are setnot setnot setnot setnot setnot setno authentication

"No authentication" explicitly requestednot setnot setnot setnot setsetno authentication

Password suppliednot setsetsetsetnot setsimple

Prompted for passwordnot setnot setsetsetnot setsimple

Attempts to read user and password
from .duarc

not setnot setnot setsetnot setsimple

Simple authentication assumed.not setsetsetnot setnot setsimple

Simple authentication assumed.
Prompted for password.

not setnot setsetnot setnot setsimple

Certificate requiredsetsetsetnot setnot setstrong

G.5.2 dunbind

quit

dunbind [-[no]quit]

This is used to break the connection to a Directory Server, and exit Tcldish.

-noquit

If this flag is specified, Tcldish unbinds from the current Directory Server but does
not exit. A dbind command must be issued before Tcldish will be able to perform
other Directory operations.

G.5.3 dmoveto

When you specify an object, the current position in the DIT is not changed. To change the
current position you should use the command

dmove[to] [-[no]pwd] [-[no]check] object

-pwd

This flag tells dmoveto to print the current position in the DIT.

-nocheck

Normally, dmoveto invokes a read to check that the named entry exists. This flag
inhibits such checking.

The current position can also be changed with the -move flag to dshowentry and dlist
commands (see Section G.5.4, “dshowentry” and Section G.5.6, “dlist”, respectively).

G.5.4 dshowentry

dshow[entry] [object] [-[no]name] [-[no]move]
[-modify[RightsRequest]]
[any of the read flags]

dshowentry will display some or all of the attributes of the specified entry. The read flags
are used to specify which attributes to show.

Tcldish – the Tcldish and Ltcldish DUAs

330M-Vault Administration Guide

-name

tells dshowentry to show the Distinguished Name of the requested entry as well as
its attributes.

-move

is used to change the current position in the DIT to the object specified as well as
showing the requested attributes.

-modify

is used to request modify rights. If modify rights are requested and the Directory Server
permits returning them, they will be shown for the attributes the user has requested.

Modify rights of none, add, remove and rename are listed along with the requested
entry attributes.

The modify rights for the entry as a whole are identified by:

modifyRights:entry

and the rights associated with a particular attribute in that entry are identified by:

modifyRights:attribute

where attribute is the name of the attribute.

G.5.5 dcompare

dcompare [object] [-[no]print] -attribute type=value

The dcompare command checks to see whether or not the entry holds a particular attribute
value. If no object is specified the current object is checked.

-attribute type=value

This is the attribute type and value to check for.

-[no]print

If -print is specified, one of the strings TRUE or FALSE is printed. If -noprint is
specified, 1 is returned instead of TRUE, and 0 is returned instead of FALSE. -print
is the default setting.

An example of how this command might be used is:

dcompare -print -attribute sn=smith

G.5.6 dlist

dlist [object] [-[no]move] [-subentries]
[-sequence sequence name]

This command displays the Relative Distinguished Names of the subordinate entries below
the current position in the DIT, or below object, if given. The number of subordinates
returned can be limited by using the -sizelimit service control flag.

-move

is used to change the current position in the DIT to the object specified.

-subentries

is used to list subentries.

Tcldish – the Tcldish and Ltcldish DUAs

331M-Vault Administration Guide

-sequence sequence name

stores the resulting entries in the sequence indicated by sequence name. For example:

dlist "c=US" -sequence US

lists the entries below the current position in the DIT, which have c=US, and stores
these in a new sequence called US.

If the sequence already exists, the results will be added to it, otherwise a new sequence
will be created. Note that using this option does not change the current default sequence.
The dsequence command must be used to do this (see Section G.6.1, “dsequence”).

Reference numbers in this new sequence will start at 1. When the sequence listed is
not the current sequence, the reference numbers appear in the form:

sequence name.reference number

For example:

TclDish% dlist -sizelimit 4 -sequence GB

GB.1 organizationalUnitName=new

GB.2 commonName=Alan Jones

GB.3 commonName=Bill Smith

GB.4 commonName=Colin Green

(sizelimit exceeded)

If a sequence is made the current sequence using the dsequence command, only the
reference numbers are displayed.

If this flag is not specified, the results are stored in the current default sequence.

The example below shows entries returned in response to a dlist request:

TclDish% dlist -sizelimit 20

1 aDMDName=Telemail

2 organizationName=Advanced Decision Systems

3 organizationName=Anterior Technology

4 organizationName=Apple Computer, Inc.

5 organizationName=ATT

6 organizationName=Auburn University

7 organizationName=Bellcore

8 organizationName=Bucknell University

9 organizationName=Carnegie Mellon University

10 organizationName=Case Western Reserve University

11 organizationName=Citibank

12 organizationName=Clarkson University

13 organizationName=Columbia University

14 organizationName=Continuous Electron Beam Accelerator Facility

15 organizationName=Control Data

16 organizationName=Corporation for National Research Initiatives

17 organizationName=Cray Research Inc.

18 organizationName=CREN+stateOrProvinceName=District of Columbia

19 organizationName=Dana Farber Cancer Institute

20 organizationName=Defense Communications Agency (Limit problem)

TclDish%

Note: The RDN identified by sequence number 18 is multi-valued.

Tcldish – the Tcldish and Ltcldish DUAs

332M-Vault Administration Guide

G.5.7 dsearch

dsearch [[-object] object] [-subentries]
[-baseobject] [-singlelevel] [-subtree]
[[-filter] filter] [-matchedvaluesonly] [-[no]relative]
[-[no]searchaliases] [-sequence sequence name]
[-[no]partial]
[any of the read flags]

This command searches the DIT, starting at the object specified, for entries that match the
given filter. When a matching entry is found, only its Distinguished Name relative to its
position in the DIT is printed unless a -show read flag option is specified, in which case
the attributes are displayed as well.

If no flags are given to a search command, then only one argument is allowed. This is taken
to be the filter and not the base object as in all other commands.

The flags -filter and -object are supplied to allow the user to specify if both a filter
and base object are required. (Note that only one need be flagged.) The following are all
valid examples of search commands:

dsearch

dsearch filter

dsearch -filter filter

dsearch -filter filter -object object

dsearch filter -object object

dsearch -filter filter object

whereas the following are not valid:

dsearch object

dsearch filter object

The protocol standard provides a default filter which “includes all”. To request this default
filter enter:

dsearch &

The format of filters differs for DAP and LDAP. In general, the examples given in this
section are in DAP format. Section G.5.7.1, “LDAP filters” gives details on specifying
filters for both protocols.

The first three flags are mutually exclusive.

-baseobject

searches only the current object.

-singlelevel

specifies all immediate children of the specified object should be searched. This is the
default setting.

-subtree

searches the current position and all the levels below recursively.

For example:

dsearch -object "<o=Widget Ltd,c=GB>" -subtree \
-filter "sn=Beasley" -type telephoneNumber -show

Tcldish – the Tcldish and Ltcldish DUAs

333M-Vault Administration Guide

will search the DIT subtree below o=Widget Ltd,c=GB for an entry with a surname
exactly matching Beasley, and then display the telephoneNumber attribute.

-matchedvaluesonly

is used to limit the attribute values returned by show to those which match the values
specified in the filter. Therefore, where the values specified in a filter are completely
satisfied by part of a multi-valued attribute, only the attribute values which match
those in the filter will be displayed.

For example, an entry contains the following two values for the cn attribute: “James
Beasley” and “Jim Beasley”. A search without the -matchedvaluesonly flag:

dsearch -filter "cn=Jim*" -type cn -show

will display both values, “James Beasley” and “Jim Beasley”. A search which includes
the -matchedvaluesonly flag:

dsearch -filter "cn=Jim*" -type cn -show -matchedvaluesonly

will return only the value “Jim Beasley”.

-norelative

is used to tell dshowname to print the full Distinguished Name of the results. Otherwise,
the name relative to the current position is printed.

-[no]searchaliases

indicates whether aliases encountered in the search should be de-referenced and thus
searched. This is different from the -[dont]dereferencealias service control
flag, which defines what happens to aliases found when locating the base object of the
search. -[no]searchaliases controls aliases encountered in the descendents of the
base search object. The default is -dereferencealias and -nosearchaliases.

-sequence sequence name

stores the resulting entries in the sequence indicated by the sequence name specified.
If the sequence already exists, the results will be added to it, otherwise a new sequence
will be created. Note, this option does not change the current default sequence. The
dsequence command must be used to do this (see Section G.6.1, “dsequence”).

Reference numbers in this new sequence will start at 1. As this is not the current
sequence, reference numbers will be shown in the form:

sequence name.reference number

(See Section G.2, “Tailoring Tcldish and Ltcldish” for an example of the reference
number format.) If a sequence is made the current sequence using the dsequence
command, only the reference numbers are displayed.

If this flag is not specified, the results are stored in the current default sequence.

The following example:

dsearch -object "<o=Widget Ltd,c=GB>" -subtree
 -filter "sn=B*" -sequence B

searches the DIT subtree below o=Widget Ltd,c=GB for entries in which surname
begins with B, and store the results in a new sequence called B.

-[no]partial

If the search is not able to do the entire search, for example because one of the Directory
Servers to search could not be contacted, it will return partial results. If -partial is

Tcldish – the Tcldish and Ltcldish DUAs

334M-Vault Administration Guide

set, -show is needed to see the full set of partial results, otherwise only a summary is
printed. Unlike referral errors, the DUA does not follow these partial references. If
-nopartial is set, no partial results will be returned.

G.5.7.1 LDAP filters

The filters used in LDAP and DAP are slightly different. This section explains some of
these differences. In LDAP filters, the filter as a whole and each expression within the filter
must be enclosed in brackets. In addition, operators precede the expression to which they
refer. To use the first two filter examples above with Ltcldish, they would need to be in
the form:

"(sn=Beasley)"
"(cn=Jim*)"

Full details on LDAP filters are given in RFC 4515.

G.5.7.2 Common filters

The following operators can be used to link expressions in both DAP and LDAP filters:

&

logical AND

|

logical OR

Parentheses () enforce the Boolean ordering of the expressions, otherwise the evaluation
is left to right. The Boolean negation operator is !.

When searching for an exact match =, the * character is used as a wildcard, and a substring
match takes place. If only * is specified, a presence match search is performed, and any
entry containing that attribute will be matched. For example, Tim* will match any attribute
value starting with the string “Tim” and *Howes any attribute value ending in the string
“Howes”.

When substrings in a filter contain non-ASCII characters, each substring must be prefixed
with the character set flag. For example:

-filter {cn={UCS-2}initial*{UCS-2}any*{UCS-2}final}

The {UCS-2} flags are needed if each of the substrings, initial, any and final contain
non printable UCS-2 characters. If only the initial substring contains non printable
UCS-2 characters, the filter can be expressed as:

-filter {cn={UCS-2}initial*any*final}

Note: A Directory Server can resolve searches of the form string* or *string
significantly faster than searches of the *string* form.

As well as an exact equality match, <= or >= can be used, or an approximate match can be
specified, by specifying ~=.

If the filter expression is incomplete and does not specify the match, Tcldish will by default
use an approximate match filter on the cn attribute. Ltcldish requires the filter is a complete
LDAP filter string and will not use a default filter.

Here is a more complex example of a filter that searches for anyone who matches the
following criteria:

Tcldish – the Tcldish and Ltcldish DUAs

335M-Vault Administration Guide

• is a member of staff or a student

• has a drink attribute

• common name approximately matches “paul”

• surname is not “Jones”.

The DAP format of this filter is:

"cn~=paul & (userClass=staff|userClass=student) &
 (!surname=Jones) & drink=*"

The LDAP format is:

"(&(cn~=paul)(|(userclass=staff)(userclass=student))
 (!(surname=Jones))(drink=*))"

Appendix C, Attribute Syntaxes contains a list of all the attributes that can be used to search
for an entry, together with a description of the type of matching allowed. Ensure that search
filters have adequate quoting (see Section G.1, “Tcl and attribute syntax quoting”).

G.5.8 dadd

dadd [object]
[-draft draft [-noedit]] [-template draft]
[-newdraft] [-objectclass objectclass]

dadd is used to add entries to the DIT. This invokes an editor on the draft entry. If there
is not a draft entry specified, a draft entry of the specified object class is created. The draft
is by default the .dishdraft in your home directory, but this name can be altered by using
the -draft flag.

When editing has finished, an add operation is sent to the Directory if any changes have
been made to the draft (the -noedit flag following a -draft stops the editor being
invoked).

-newdraft

causes the current draft to be overwritten with a new template of the appropriate object
class.

-template

is used to specify a template draft file that should be used during editing. The template
file is not modified, it is copied to the draft file.

If the add completes successfully, the draft entry is renamed with a suffix of .old. If the
add fails, the draft is left unchanged. If you issue a subsequent add, you will be asked if
you wish to use the existing draft or create a new one.

Note: With the M-Vault Server, until the prescriptiveACI attribute of the access
control subentry is modified, only the DSA Manager is permitted to add entries
to the Directory Server.

G.5.9 ddelete

ddelete [object]

Tcldish – the Tcldish and Ltcldish DUAs

336M-Vault Administration Guide

The specified entry is removed from the DIT.

Note: Only leaf entries (that is, entries, without children, at the bottom of the
DIT) can be deleted using this command. The dbulkclean utility, described in
Section G.7, “Bulk data utilities”, can be used to delete multiple leaf entries, or
an entire subtree.

G.5.10 dmodify

dmodify [object]
[-draft draft [-noedit]] [-newdraft]
[-add attribute] [-remove attribute]

The dmodify command is used to modify existing entries in the DIT, and has two modes
of operation. The first is used to modify specific attributes and uses the -add and -remove
flags to add and remove single attributes and values. Many of these can be strung together
in the same command, for example:

dmodify -add "description=new attribute" -remove "drink=Chocolate"

The second method is useful for altering many attributes at the same time. If the following
is typed:

dmodify

this will get the current DIT entry and place a copy of it in the .dishdraft file. If the -draft
option is specified, then the given file is used. After editing, any changes to the entry are
sent to the Directory (as with adding an entry, the -noedit flag following a -draft stops
the editor being invoked).

The draft file is handled in the same way as with dadd, except that when a new draft is
created, the current values of the entry’s attributes are read from the Directory.

G.5.11 dmodifyrdn

dmodifyrdn [object] -name attribute type=attribute value
[-[no]delete]

This is used to modify the Relative Distinguished Name (RDN) of an entry, as this cannot
be changed using the modify operation.

Note: The M-Vault Server only allows this operation on leaf nodes.

-name attribute type=attribute value

The new RDN of the selected object. For example:

dmoveto "<cn=Bill Smith,ou=Research,o=Widget Ltd,c=GB>"
dmodifyrdn -name "cn=Phil Jones"

-nodelete

This flag is used to prevent the old RDN being removed as an attribute of the entry.

Tcldish – the Tcldish and Ltcldish DUAs

337M-Vault Administration Guide

G.6 Other Tcldish commands

Tcldish also provides commands which do not map directly onto DAP/LDAP operations
but are useful in scripts or for management purposes.

G.6.1 dsequence

dsequence [[-sequence] sequence name
[-all] [-reset] [-status]]

The results of a search or list operation are stored in a sequence, and each entry is given a
reference number. Tcldish starts with a sequence called default as the current sequence.
Results can be directed to sequences other than the current sequence by using the
-sequence option in the dlist or dsearch commands. This option does not change the
current sequence.

The dsequence command is used to change the current default sequence, and to view,
name and reset sequences.

• Using the command without any options:

dsequence

returns the current sequence. The dstatus command also returns this information.

• To give the current sequence a different name use the following format:

dsequence [-sequence] sequence name

where -sequence is the flag indicating a sequence name follows. sequence name is
the name to be assigned to the current sequence. This name must contain alphabetic
characters only.

• The following options are used to obtain sequence status details, and/or to clear sequences:

sequence name

specifies the target sequence. If no sequence is specified, the current sequence is
selected.

-all

The operation (reset or status) is applied to all user sequences.

-reset

removes all the Distinguished Names from the sequence(s), and frees any memory
used by them. On subsequent operations using the sequence(s), reference numbers
will restart from 1.

-status

gives the sequence name(s) and reports the number of entries in the sequence(s).
The following example shows the information output by this operation:

323 entries in sequence <GB>

40 entries in sequence <test>

1 entries in sequence *internal*

10 entries in sequence <default>

Tcldish – the Tcldish and Ltcldish DUAs

338M-Vault Administration Guide

GB and test are user defined sequences. default is the default Tcldish sequence,
and is the current sequence when Tcldish is started. *internal* shows how many
Distinguished Names are being used by Tcldish. This sequence is not accessible by
the user.

G.6.2 dshowname

dshowname [object] [-ufn]

dshowname will display the Distinguished Name of the current entry. A name is displayed
in Internet format.

-ufn

This flag requests that the Distinguished Name be displayed in a User Friendly Naming
style (as described in RFC 1781). For example:

Jim Beasley, Widget Ltd, GB

G.6.3 dstatus

dstatus [-user] [-syntax] [-dsa]

The command dstatus with no parameters will return information about the current bound
state of Tcldish, and about the Directory Server it has contacted. For example:

Connected to : <cn=DSA,o=Widget Ltd,c=GB> at

 Internet=224.40.16.220

Current position : <o=Widget Ltd,c=GB>

User name : <cn=Manager,o=Widget Ltd,c=GB>

Current sequence : default

Authentication level : none

Signed ops : Not using signed ops

-user

Prints out the name under which the user is currently bound.

-syntax

This flag prints out a list of the syntaxes configured in the Directory Server. Syntaxes
are listed in Appendix C, Attribute Syntaxes.

-dsa

If connected to an M-Vault Server, Directory Server statistics can be printed using
this flag. These are described in Chapter 11, Monitoring the Directory.

G.6.4 dmanager

This command is only applicable when using DAP as the access protocol (via Tcldish).

dmanager -subentry object -grant -user object

dmanager -subentry object -revoke -user object

The dmanager command may only be used by the DSA Manager, interacting with an
M-Vault Server.

Tcldish – the Tcldish and Ltcldish DUAs

339M-Vault Administration Guide

-subentry object

This flag identifies the subentry to be modified. The subentry specified should be
immediately subordinate to a naming context mastered by this Directory Server, and
can be found using the dlist command with the -subentries flag.

-grant

Authorization to act as a DSA Manager is to be given to the user identified by the
argument to the -user flag. That user will be able to add, modify and remove entries,
but will not be able to use the dmanager command.

-revoke

This flag revokes Directory management authorization for the user identified by the
argument to the -user flag. Only the DSA Manager may revoke authorization.

-user object

The target user for granting or revoking Directory management authorization.

An example of using this command might be:

dmoveto "<ou=Research,o=Widget Ltd,c=GB>"
dmanager -subentry "cn=ac-subentry" -grant -user "cn=DSA Manager"

G.7 Bulk data utilities

There are three Tcldish commands which provide facilities for managing bulk data in the
Directory: dbulkclean, dbulkload and dbulkdump:

dbulkclean
is a useful utility for clearing out all entries below a specified location. You would
typically run this utility, to clear out old entries, before running the bulkload utility
to add new entries. You can find more details of this command in Section G.7.2, “The
dbulkclean command”.

dbulkload
is for loading multiple entries from a data file into the Directory. The data file format
can be LDAP Data Interchange Format (LDIF) or Comma Separated Value (CSV).
You can find more details of this command in Section G.7.1, “The Tcldish dbulkload
command”.

dbulkdump
allows you to write Directory entries to an LDIF file. Using this utility and the
dbulkload utility with LDIF files provides a useful facility for backing up your
Directory data, or moving entries in a Directory subtree to a different system. You can
find more details of this command in Section G.7.3, “The dbulkdump command”.

G.7.1 The Tcldish dbulkload command

The Tcldish dbulkload command has two formats, depending on the format of the file
holding the data to be loaded: one for CSV files and one for LDIF.

Although data stored in CSV format is not as portable to other systems as the LDIF format,
CSV has the following advantages:

• CSV is simple to generate from database programs.

• DNs can be specified as relative DNs, so it is possible to load entries into a different
location in the Directory. In LDIF files, absolute DNs are specified making it more
difficult to load data into a location other than the one for which it was originally created.

Tcldish – the Tcldish and Ltcldish DUAs

340M-Vault Administration Guide

LDIF files have the following advantages:

• LDIF is a widely accepted format for importing and exporting Directory information
between LDAP or X.500 servers.

• LDIF format is portable between different systems.

• Entries for an entire subtree can be described in an LDIF file. A CSV file can describe
the entries for one level only.

• LDIF files can provide a simple Directory data backup facility.

G.7.1.1 The Tcldish dbulkload command for CSV data

The format of the Tcldish dbulkload command for CSV data is:

dbulkload [object] [-[no]overwrite]
-csvdata filename -template filename
[-rdn [attribute type...]] [-[no]usefirst]
[any service control flag] [-help]

Where:

object

specifies the Directory location under which the data is to be loaded. The default value
is the current location in the Directory.

-[no]overwrite

specifies whether dbulkload should try to overwrite existing entries. -nooverwrite
reports an error if it tries to add an entry which already exists. -overwrite is the
default.

The -nooverwrite option involves fewer operations per entry than -overwrite.
Therefore, if efficiency is a concern, run dbulkclean (see Section F.7.2 on page 328)
to clear out existing entries and then run dbulkload with the -nooverwrite option.

-csvdata data filename

specifies a CSV file (see Section G.7.1.1.1, “The CSV data file”) which contains
attribute values for the entries to be added.

-template template filename

specifies the file to be used as a template file (see Section G.7.1.1.2, “The CSV template
file”) to translate data entries into the required format for adding to the Directory.

-rdn [attribute type [attribute type ...]]*

is a list of attributes which form the Relative Distinguished Name of the entries to be
added. If no attributes are specified, cn is selected by default. Multi-valued RDNs can
be specified.

-[no]usefirst

If there are multiple values for an attribute type which is to be included in the RDN,
the -usefirst flag directs dbulkload to use the first value in the template file for
the attribute type. Thus if a data file line included two values for cn:

Adam Alexander, A.N. Alexander...

and you wanted to use the second value as the RDN, the template file should be set
up something like:

objectClass= top
objectClass= person
objectClass= organizationalPerson

Tcldish – the Tcldish and Ltcldish DUAs

341M-Vault Administration Guide

cn= $2
cn= $1

You would then run dbulkload with the arguments:

dbulkload -csvdata filename -template filename -rdn cn -usefirst

The default value, -nousefirst, indicates that if multiple values exist for an RDN
attribute type, an error is to be generated.

-help

displays help information.

G.7.1.1.1 The CSV data file

The CSV data file is a standard comma separated value file, that is, each entry is on a new
line and values are delimited by a comma. The following is a CSV formatted data file.

Adam Alexander, Alexander,555-0442, aa@Widget.com, aa, {FILE}/path/to/adam.jpg
Bob Brown, Brown, , bb@Widget.com, bb, {FILE}/path/to/bob.jpg
Carl Carpenter, Carpenter,555-0443, , cc,{FILE}/path/to/carl.jpg
Dave Davenport, Davenport,555-0446, dd@Widget.com, dd, {FILE}/path/to/dave.jpg
Eric Edmonson, Edmonson, 555-0448, ee@Widget.com,, {FILE}/path/to/eric.jpg
Fred Ford, Ford, 555-0449, ff@Widget.com, ff, {FILE}/path/to/fred.jpg
Geoff Green, Green, 555-0388, gg@Widget.com, gg, {FILE}/path/to/geoff.jpg

A value containing a comma or quote character should be surrounded by quotes. A literal
quote is specified by two quotes in a row. For example:

employee,"Ford ""Fred""","3rd floor, room 12",0449

has the following four fields:

• employee

• Ford "Fred"

• 3rd floor, room 12

• 0449

G.7.1.1.2 The CSV template file

The CSV template file is a simple EDB format file. The example below shows the contents
of a sample template file for the data given Section G.7.1.1.1, “The CSV data file”.

objectClass= top
objectClass= person
objectClass= organizationalPerson
objectClass= inetOrgPerson
sn= $2
cn= $1
telephoneNumber= $3
postalAddress= Widget Ltd. $ 5293 Butchers Lane $ York $ GB
rfc822Mailbox= $4
userid= $5
jpegPhoto= $6

In this file, a line is given in the format:

Tcldish – the Tcldish and Ltcldish DUAs

342M-Vault Administration Guide

attribute= $number

where number denotes the field of the data file entry to be substituted. The line should
contain one substitution only, and no additional text. For example: sn= $2 indicates that
the second field of each entry in the data file is to be added as a sn attribute.

Fields in the data file can be reused or even ignored; for example, you could specify
userid= $2, to make the userid attribute the same as the sn attribute.

Attributes which are common to all entries, postalAddress in this example, can be included
in the template file, and omitted from the data file.

G.7.1.1.3 Examples of interactive bulk loading

dbulkload can be run from Tcldish or Ltcldish. As loading from an LDIF file is
straightforward, examples are not included in this section. Instead, the following examples
use the CSV sample data and template files given above.

$ dbulkload -csvdata /path/to/data.csv

 -template /path/to/template -rdn cn

Added <cn=Adam Alexander,o=Widget Ltd,c=GB>

Added <cn=Bob Brown,o=Widget Ltd,c=GB>

Added <cn=Carl Carpenter,o=Widget Ltd,c=GB>

Added <cn=Dave Davenport,o=Widget Ltd,c=GB>

Added <cn=Eric Edmonson,o=Widget Ltd,c=GB>

Added <cn=Fred Ford,o=Widget Ltd,c=GB>

Added <cn=Geoff Green,o=Widget Ltd,c=GB>

If the command is issued a second time (with the default, -overwrite), notices will be
issued for both add and remove operations:

$ dbulkload -csvdata /path/to/data.csv

 -template /path/to/template -rdn cn

Removed <cn=Adam Alexander,o=Widget Ltd,c=GB>

Added <cn=Adam Alexander,o=Widget Ltd,c=GB>

Removed <cn=Bob Brown,o=Widget Ltd,c=GB>

Added <cn=Bob Brown,o=Widget Ltd,c=GB>

Removed <cn=Carl Carpenter,o=Widget Ltd,c=GB>

Added <cn=Carl Carpenter,o=Widget Ltd,c=GB>

Removed <cn=Dave Davenport,o=Widget Ltd,c=GB>

Added <cn=Dave Davenport,o=Widget Ltd,c=GB>

Removed <cn=Eric Edmonson,o=Widget Ltd,c=GB>

Added <cn=Eric Edmonson,o=Widget Ltd,c=GB>

Removed <cn=Fred Ford,o=Widget Ltd,c=GB>

Added <cn=Fred Ford,o=Widget Ltd,c=GB>

Removed <cn=Geoff Green,o=Widget Ltd,c=GB>

Added <cn=Geoff Green,o=Widget Ltd,c=GB>

If the command is issued again, with -nooverwrite specified, errors are reported, since
the entries already exist from the previous operations:

$ dbulkload -csvdata /path/to/data.csv

 -template /path/to/template -rdn cn -nooverwrite

Unable to add <cn=Adam Alexander,o=Widget Ltd,c=GB>

::*** Update error - Already exists ***

Unable to add <cn=Bob Brown,o=Widget Ltd,c=GB>

::*** Update error - Already exists ***

Tcldish – the Tcldish and Ltcldish DUAs

343M-Vault Administration Guide

Unable to add <cn=Carl Carpenter,o=Widget Ltd,c=GB>

::*** Update error - Already exists ***

Unable to add <cn=Dave Davenport,o=Widget Ltd,c=GB>

::*** Update error - Already exists ***

Unable to add <cn=Eric Edmonson,o=Widget Ltd,c=GB>

::*** Update error - Already exists ***

Unable to add <cn=Fred Ford,o=Widget Ltd,c=GB>

::*** Update error - Already exists ***

Unable to add <cn=Geoff Green,o=Widget Ltd,c=GB>

::*** Update error - Already exists ***

The next example shows the inclusion of multi-valued entries, combining the attributes cn
and userid:

$ dbulkload -csvdata /path/to/data.csv

 -template /path/to/template -rdn cn userid

Added <userid=aa+cn=Adam Alexander,o=Widget Ltd,c=GB>

Added <userid=bb+cn=Bob Brown,o=Widget Ltd,c=GB>

Added <userid=cc+cn=Carl Carpenter,o=Widget Ltd,c=GB>

Added <userid=dd+cn=Dave Davenport,o=Widget Ltd,c=GB>

data.ex:5 error processing record: entry doesn't have the rdn attribute userid

Added <userid=ff+cn=Fred Ford,o=Widget Ltd,c=GB>

Added <userid=gg+cn=Geoff Green,o=Widget Ltd,c=GB>

Here, an error is reported on line 5 of the data file, because that line did not contain a value
in the “userid” field, which is required when it is an RDN attribute. It is also important to
note that the entries added by previous dbulkload calls were not removed. The RDN of
these entries specified the cn attribute on its own, which is considered to be different from
the multi-valued RDN of userid+cn.

G.7.1.1.4 Running bulk data utilities froma Tcldish script

The bulk data utilities can be used interactively, or as a part of a simple Tcldish script. This
section contains a sample Tcldish script which bulkloads data into the DIT location,
ou=Marketing,o=Widget Ltd,c=GB, from a CSV data file. You would need to set the
variables BASE and OU to the required Directory location where the data is to be loaded,
and the CSVDATA and TEMPLATE variables to the correct paths for the data and template
files.

#!/opt/isode/bin/tcldish -f
allow username to be specified in the command line
eval [concat dbind $argv]

set BASE "<o=Widget Ltd,c=GB>"
set OU "ou=Marketing"
set CSVDATA /path/to/data.csv
set TEMPLATE /path/to/template

proc bulkload_ou {base ou csvdata template} {
 # move to the level where we want to create the ou
 puts "Moving to $base"
 dmoveto $base

 # create a draft for the ou
 set filename [glob ~]/.dishdraft
 set fd [open $filename w]

 puts $fd "objectclass= top"
 puts $fd "objectclass= organizationalUnit"

 close $fd

Tcldish – the Tcldish and Ltcldish DUAs

344M-Vault Administration Guide

 # add the ou and go there
 puts "Creating $ou"
 dadd $ou -draft $filename -noedit
 dmoveto $ou

 # perform the bulkload
 puts "Bulkloading entries into $ou"
 puts [dbulkload -csvdata $csvdata -template $template -overwrite]
}
puts "Script started at [exec date]"
puts "------------------------------"

set command [list bulkload_ou $BASE $OU $CSVDATA $TEMPLATE]
catch $command result
puts $result

puts "------------------------------"
puts "Script ended at [exec date]"

G.7.1.2 The Tcldish dbulkload command for LDIF data

Note: dbulkload currently supports LDIF entry specification records, but not
LDIF change records, which describe a set of changes to be applied to the
Directory.

The format of the dbulkload command for LDIF data is as follows:

dbulkload [object] [-[no]overwrite]
-ldif filename
[any service control flag] [-help]

object

specifies the Directory location under which the data is to be loaded. The default value
is the current location in the Directory.

-[no]overwrite

specifies whether dbulkload should try to overwrite existing entries. -nooverwrite
reports an error if it tries to add an entry which already exists. -overwrite is the
default.

The -nooverwrite option involves fewer operations per entry than -overwrite.
Therefore, if efficiency is a concern, run dbulkclean (see Section G.7.2, “The
dbulkclean command”) to clear out existing entries and then run dbulkload with the
-nooverwrite option.

-ldif filename

defines the pathname of the LDIF file containing the attribute specification records.

-dontdereferencealias

is the service control flag. dbulkload sets -dontdereferencealias as the default.

Note: For most commands, the default for this service control is
-dereferencealias.

G.7.2 The dbulkclean command

The dbulkclean command removes (recursively) all entries below the current entry. The
format of the dbulkclean command is:

Tcldish – the Tcldish and Ltcldish DUAs

345M-Vault Administration Guide

dbulkclean [object] [-[no]prompt] [-[no]base] [-[no]below]
[-sequence sequence name]
[any service control flag] [-help]

Where:

object

The default value is the current location in the Directory.

-[no]prompt

is a flag to specify whether Tcldish should issue an initial prompt, before removing
the entries. For non-interactive use -noprompt should be specified. -prompt is the
default.

-[no]base

If -base is specified, the entry specified by object or entries specified by sequence
name will be removed. -nobase, the default, does not delete these entries.

-below

All entries below the entry specified by object or entries specified by sequence
name will be (recursively) removed. This flag is set by default.

-sequence sequence name

allows the bulkclean operation to act on all entries in a given sequence rather than an
object specified on the command line. To ensure that the actual entries in the sequence
are removed, in addition to the entries below them, use both the -base and -sequence
flags.

-help

displays help information.

On completion, dbulkclean reports the following information:

• How many entries were deleted.

• How many entries could not be deleted.

• Any conditions which prohibited the command from being able to find all the entries
which should have been deleted.

G.7.3 The dbulkdump command

dbulkdump [object] [-sequence sequence name] [-file filename]
[-[no]header] [-[no]base] [-[no]below]
[any service control flag] [-help]

The dbulkdump command writes entries from the Directory to a file or standard output
in LDIF format.

object

The location in the DIT from which entries are to be dumped. If neither an object nor
a sequence is specified, the current location in the DIT is used.

-sequence sequence name

The name of the sequence of entries to be dumped.

-file filename

The file to which the entries will be written in LDIF format. If a file is not specified,
the entries will be output to the standard output device.

-[no]header

This flag controls whether the LDIF header information (currently only a version
specifier) is output. -header is the default setting.

Tcldish – the Tcldish and Ltcldish DUAs

346M-Vault Administration Guide

-[no]base

The default setting, -base, causes the entry specified by object or entries specified
by sequence name to be dumped.

-[no]below

The default setting, -below, dumps the entire subtree below the specified location.
To dump a single level of the DIT, use:

dlist -sequence sequence name
dbulkdump -sequence sequence name -nobelow

dlist holds the entries in a sequence, and dbulkdump dumps the sequence.

When dumping a large number of entries, the limit on the number of entries which can be
returned may be exceeded. If the Tcldish -sizelimit service flag is defaulted, the
maximum number of entries is controlled by the adminSizeLimit and
adminLookthroughLimit attributes in the GDAM entry. If a limit is encountered, not all
entries will be dumped, and an error will be logged in the output.

Tcldish – the Tcldish and Ltcldish DUAs

347M-Vault Administration Guide

Appendix H Dmish Scripting Interface
This chapter describes the scripting interface Dmish. The Directory Management Shell
(Dmish) is an extended Tcl (Tool Command Language) shell for use by Directory
administrators and systems integrators.

Dmish does not require a graphics display to operate and can also be used in batch mode.
Because it is a Tcl application, the user has all the features of the Tcl interpreter available
for writing scripts. The following operations are available for displaying and updating
managed objects:

• List – list the objects in the Directory Server.

• Add – add a managed object to the Directory Server.

• Modify – modify an object in the Directory Server.

• Remove – remove an object from the Directory Server.

These operations can be applied to the supported managed object types. Additionally, there
are commands to:

• Create a Directory Server.

• Start a Directory Server.

• Stop a Directory Server.

• Open a management connection with a Directory Server.

• Close a management connection with a Directory Server.

• Set or display the base of a subtree for the list commands.

• Show a single managed object.

H.1 Using Dmish

When creating new Directory Servers, or starting or stopping local Directory Servers, the
Server Manager should login as the user of the Directory Server account before running
the Dmish tool, as the Directory Server account must be the owner of the Directory Server
configuration directory.

Under Unix, Dmish is started by running dmish which will have been installed into
(SBINDIR).

Under Windows, run the executable file dmish.exe, which will have been installed by
default into the folder (SBINDIR) on the installation drive.

When running, Dmish uses the following prompt:

dmish%

Dmish Scripting Interface

348M-Vault Administration Guide

H.2 Creating a new Directory Server

A new Directory Server can be created on a local host machine using the dmi create
command.

Note: While this command is available deployers should note that servers created
in this way are not initialized with any form of access control, and we recommend
use of M-Vault Console or dsa-setup which employ templating mechanisms to
create a practical and fully initialized DSA.

dmi create -dsa_dir path
-name dnstring
-address addrstring
-password password
-prefix dnstring
[-superior_name dnstring -superior_address addrstring]
| -help

H.2.1 Arguments

-dsa_dir path

sets the pathname of the file system directory in which the new Directory Server will
run and create its database files and subdirectories.

-name dnstring

sets the new Directory Server’s own name to the Distinguished Name with string
representation dnstring.

-address addrstring

sets the address of the new Directory Server to the Presentation Address with string
representation addrstring.

-password password

sets the manager password of the new Directory Server to the string password.

-prefix dnstring

sets the context prefix of the primary naming context that the new Directory Server
will master to the Distinguished Name with the string representation dnstring. This
variable is mandatory.

-superior_name dnstring

sets the name of the superior reference to the Distinguished Name with the string
representation dnstring.

-superior_address addrstring

sets the address of the superior reference Directory Server to the Presentation Address
with the string representation addrstring.

-help

displays a synopsis of the commands available.

H.2.2 Result

On successful creation of the new Directory Server this command returns an empty Tcl
string.

Dmish Scripting Interface

349M-Vault Administration Guide

H.2.3 Errors

If the Directory Server cannot be created or if any other failure occurs, this command
provides an error describing the problem.

H.3 Starting a Directory Server

A Directory Server that is not already running can be started using the following command:

dmi start [-dsa_dir path] | -help

H.3.1 Arguments

-dsa_dir path

specifies the pathname of the file system directory in which the Directory Server was
created and will run. If this switch and argument are not supplied a default of (DSADIR)
is used.

-help

displays a synopsis of the commands available.

H.3.2 Result

On successfully starting the Directory Server, the command returns an empty Tcl string.

H.3.3 Errors

On failing to start the Directory Server for any reason, the command provides an error
message describing the problem.

H.4 Stopping a Directory Server

A Directory Server that is already running can be stopped using the following command:

dmi stop [-dsa_dir path] | -help

H.4.1 Arguments

-dsa_dir path

specifies the pathname of the file system directory in which the Directory Server was
created and is running. If this switch and argument are not supplied a default of
(DSADIR) is used.

-help

displays a synopsis of the commands available.

Dmish Scripting Interface

350M-Vault Administration Guide

H.4.2 Result

On successfully stopping the Directory Server, the command returns an empty Tcl string.

H.4.3 Errors

On failing to stop the Directory Server for any reason, the command provides an error
message describing the problem.

H.5 Opening a management connection

To open a management association with an available Directory Server, use the following
command:

dmi open [-call dsa] -user dn -password password
[-simple | -strong [-protected]]
| -help

H.5.1 Arguments

-call dsa

specifies the name of the Directory Server to be managed. The argument may be a
Directory Server name configured in dsaptailor, or a Directory Server Presentation
Address. If this switch is not supplied it defaults to the first Directory Server address
configured in dsaptailor.

-user dn

is the Distinguished Name of the DSA Manager.

-password password

is the password for the DSA Manager. In the case of strong authentication, this is the
passphrase used to encrypt the PKCS#12 file containing the certificate and private key
corresponding to the user dn. Section 3.10, “Managing identities”.

-simple

indicates that simple authentication is to be used.

-strong

indicates that strong authentication is to be used.

-protected

indicates that signed operations are to be used.

-help

displays a synopsis of the commands available.

H.5.2 Result

On success, this command returns a Directory Server managed object. When run
interactively, the Tcl interpreter prints the result to standard output. The name of this object
is also stored in the global variable DMIid and becomes the default connection for future
Dmish commands to which the -id argument is not supplied.

H.5.3 Errors

This command propagates any error from dmilib and provides its own error for any other
failure.

Dmish Scripting Interface

351M-Vault Administration Guide

H.6 Closing a management connection

When a connection to the Directory Server is no longer required it should be closed using
the following command:

dmi close [-id id] | -help

This releases resources in both the management application and in the Directory Server
being managed. After this command has completed successfully, no further commands
may be issued on that connection. If the current default connection is closed, the variable
DMIid is set to a special value meaning that there is no longer any default.

H.6.1 Arguments

-id id

if this argument is supplied, id identifies the management connection to be closed. If
it is omitted, the connection returned by the last successful open command is closed.

-help

displays a synopsis of the commands available.

H.6.2 Result

On success this command returns the empty Tcl string.

H.6.3 Errors

On failure this command provides an error message describing the problem.

H.7 Manipulating managed objects

The following commands operate over an established management association with a
Directory Server.

Note: The implementation is currently limited to a single management connection
at a time.

H.7.1 Types of objects that can be managed

The following switches are used in order to identify the types of object that can be managed:

• -dsa manage Directory Server objects.

• -db manage database (GDAM) objects.

• -nc manage naming context objects.

• -adm manage administrative point objects.

• -subr manage subordinate reference objects.

Dmish Scripting Interface

352M-Vault Administration Guide

• -xr manage cross-reference objects.

• -nssr manage non-specific subordinate reference objects. This option is currently not
supported.

• -supr manage superior reference objects.

• -supplier manage shadow supplier objects.

• -consumer manage shadow consumer objects.

H.7.1.1 Managing indexes

Indexes can also be managed as objects in Dmish, with the following limitations:

• The list command does not retrieve index objects.

• You cannot modify index objects – you must remove the index and create a new one.

• You can add multiple indexes at once, but you can only remove a single index at a time.
For this reason, the index managed object makes use of two different switches:

• -indexes add index objects

• -index perform other operations on index objects, i.e. show, remove.

H.7.2 Default list base

The following command sets or displays the default base object for the list command:

dmi list [-id id] [dnstring] | -help

H.7.2.1 Arguments

-id id

if this argument is supplied, id identifies a management connection previously returned
by the open command whose default is to be set. If it is omitted, the connection returned
by the last successful open command is used.

dnstring

if this argument is supplied it must be the string representation of a Distinguished
Name to which the default base will be set. If this argument is omitted, the current
default base is returned.

-help

displays a synopsis of the commands available.

H.7.2.2 Results

On success, this command returns the string DN of the default base that is in effect when
the command completes.

H.7.2.3 Errors

On failure, this command provides an error message describing the problem. Possible errors
include an invalid argument to the -id switch or an invalid dnstring.

H.7.3 List managed objects

Managed objects can be retrieved from the Directory Server and displayed using the
following command:

dmi list [-id id] [-base dnstring] [type] [-show | -noshow]
| -help

Dmish Scripting Interface

353M-Vault Administration Guide

H.7.3.1 Arguments

-id id

if this argument is supplied, id identifies a management connection previously returned
by the open command to which the operation should be applied. If it is omitted, the
connection returned by the last successful open command is used.

-base dnstring

if this argument is supplied it must be the string representation of a Distinguished
Name from which the base object for the list operation is generated. If this argument
is omitted, the current default base as set by the base command is used.

type

by default, information about all types of managed objects are returned, except for
indexes. This can be constrained to managed objects of particular kinds by specifying
one or more of the switches in Section H.7.1, “Types of objects that can be managed”.

By default, only the name and type of each managed object are returned. All attributes can
be returned by making the appropriate selection below:

-show

show all attributes.

-noshow

show only the name and type of the managed object (the default).

-help

displays a synopsis of the commands available.

H.7.3.2 Results

On success, this command returns a sequence number, the type, name, and properties of
each managed object found, as a string formatted similar to a Tcldish search result. Managed
objects are separated in the result by a blank line following each managed object except
the last. Each managed object begins with a line of the format:

Sequence-number MO-type : MO name

The properties of the managed object are listed next if the -show option was selected, one
per line, as though they were attributes of an entry:

Property-type = Property value

The property values are in the format defined by the string command of the type used to
represent the corresponding managed object property in dmilib. This is commonly the
string format for a Directory attribute syntax used to store the property. The sequence
number may be used with the show command to identify that specific managed object,
without having to supply the managed object identification. When run interactively the Tcl
interpreter prints the result string to standard output.

H.7.3.3 Errors

On failure, the command provides an error message describing the problem.

H.7.4 Show managed objects

A specific managed object can be retrieved from the Directory Server and displayed using
the following command:

dmi show [-id id] type name | sequence-number | -help

Dmish Scripting Interface

354M-Vault Administration Guide

H.7.4.1 Arguments

-id id

if this argument is supplied, id identifies a management connection previously returned
by the open command to which the operation should be applied. If it is omitted, the
connection returned by the last successful open command is used.

type

a managed object is identified by its type which can be chosen by selecting one of the
switches in Section H.7.1, “Types of objects that can be managed” and its name, or a
sequence number generated by the list command.

name

if this argument is supplied it must be the string representation of the Distinguished
Name of the entry.

sequence-number

is a number listed by the list command.

-help

displays a synopsis of the commands available.

Note: All attributes of the managed object are returned.

H.7.4.2 Results

On success, this command returns the type, name, and properties of the managed object as
a string formatted similar to a Tcldish search result. The managed object begins with a
line of the format:

MO-type : MO name

The properties of the managed object are listed next, one per line, as though they were
attributes of an entry:

Property-type = Property value

The property values are in the format defined by the string command of the type used to
represent the corresponding managed object property in dmilib. This is commonly the
string format for a Directory attribute syntax used to store the property. The sequence
number may be used with the show command to identify that specific managed object,
without having to supply the managed object identification. When run interactively the
Tcl interpreter prints the result string to standard output.

H.7.4.3 Errors

On failure, the command provides an error message describing the problem.

H.7.5 Add managed object

A new managed object can be added to the Directory Server using the following command:

dmi add [-id id] type
[-draft draft]
[-newdraft]
[-template file]
[-noedit]
[-editor prog]
| -help

Dmish Scripting Interface

355M-Vault Administration Guide

This command creates a draft property file for the new managed object and displays it in
an editor. The draft contains a line for each property of the managed object in the format
described for the list command result except that the property values are absent. When the
user has finished editing the properties they save the draft and quit the editor. Dmish then
constructs a new managed object with the properties contained in the draft file and adds it
to the Directory Server.

H.7.5.1 Arguments

-id id

if this argument is supplied, id identifies a management connection previously returned
by the open command to which the operation should be applied. If it is omitted, the
connection returned by the last successful open command is used.

type

this argument specifies the type of managed object to be added. It must be one of the
managed object type switches described in Section H.7.1, “Types of objects that can
be managed”. For index objects, see the section called “Adding one or more index
objects”.

-draft draft

if this argument is supplied, draft is the pathname of the draft file to use. Otherwise,
a file called .dmidraft in the user’s home directory is used.

-newdraft

normally, if the draft file already exists when the add command is issued, the user is
asked whether they wish to use the existing file and contents. This is useful for
correcting errors in the draft after a failed add command. If this argument is supplied,
an existing draft file is overwritten by the new template without prompting.

-template file

normally the add command creates the draft file with a set of properties appropriate
to the type of managed object. If this argument is supplied the draft file is created from
file.

-noedit

if this argument is supplied, the editor is not invoked on the draft file before attempting
to add the new managed object. This is useful if there is already an existing draft file
containing the desired properties, or in conjunction with the -template switch for
adding prepared managed objects.

-editor prog

normally the name of the editor program to use is taken from the user’s EDITOR
environment variable if it exists, or else a system default is used. If this switch is
supplied, the program prog is used instead.

-help

displays a synopsis of the commands available.

H.7.5.2 Results

On success, this command deletes the draft file and returns the empty Tcl string.

H.7.5.3 Errors

On failure, this command does not delete the draft file and provides an error message
describing the problem.

H.7.5.4 Adding one or more index objects

Note: The index is the only object of which multiples can be created at once.

To indicate this, the type used to add an index is -indexes. Therefore, the command to
add an index would be:

Dmish Scripting Interface

356M-Vault Administration Guide

dmi add [-id id] -indexes
[-draft draft]
[-newdraft]
[-template file]
[-noedit]
[-editor prog]
| -help

When you enter this command, you are asked to complete three fields: the name of the
database the index or indexes are to be created for; the index name(s); and the index file,
if appropriate. The index name is entered as the abbreviated attribute name and index type,
separated by a colon; for example, to create an equality index on the surname attribute,
you would enter:

index_name = sn:e

The substring and approximate index types are represented by s and a respectively. To
create more than one index, enter more index names on the same line separated by spaces;
for example, to create both a substring and equality index for the surname attribute, you
would enter:

index_name = sn:s sn:e

H.7.6 Modify managed object

The properties of an existing managed object in the Directory Server can be modified using
the following command:

dmi modify [-id id] type name | sequence-number
[-draft draft]
[-newdraft]
[-noedit]
[-editor prog]
| -help

This command reads the managed object with the specified type and name from the DSA,
creates a draft property file, and displays it in an editor. The draft contains a line showing
the existing value of each managed object property in the format described for the list
command. The user modifies the properties by editing the values, saving the file, and
quitting the editor. Dmish then constructs a managed object containing the new property
values and modifies it in the Directory Server.

H.7.6.1 Arguments

-id id

if this argument is supplied, id identifies a management connection previously returned
by the open command to which the operation should be applied. If it is omitted, the
connection returned by the last successful open command is used.

type

this argument specifies the type of managed object to be modified. It must be one of
the managed object type switches described in Section H.7.1, “Types of objects that
can be managed”.

Note: You cannot modify an index object; you must remove the index and
create a new one.

Dmish Scripting Interface

357M-Vault Administration Guide

name

if this argument is supplied it must be the string representation of the Distinguished
Name of the entry.

sequence-number

is a number listed by the list command.

-draft draft

if this argument is supplied, draft is the pathname of the draft file to use. Otherwise,
a file called .dmidraft in the user’s home directory is used.

-newdraft

normally, if the draft file already exists when the modify command is issued, the user
is asked whether they wish to use the existing file and contents. This is useful for
correcting errors in the draft after a failed modify command. If this argument is supplied,
an existing draft file is overwritten by the new template without prompting.

-noedit

if this argument is supplied, the editor is not invoked on the draft file before attempting
to add the new managed object. This is useful if there is already an existing draft file
containing the desired properties, or in conjunction with the -draft switch for
modifying prepared managed objects.

-editor prog

normally the name of the editor program to use is taken from the user’s EDITOR
environment variable if it exists, or else a system default is used. If this switch is
supplied, the program prog is used instead.

-help

displays a synopsis of the commands available.

H.7.6.2 Results

On success, this command deletes the draft file and returns the empty Tcl string.

H.7.6.3 Errors

On failure, this command does not delete the draft file and provides an error message
describing the problem.

H.7.7 Remove managed object

An existing managed object can be removed from the Directory Server using the following
command:

dmi remove [-id id] type name | sequence-number | -help

H.7.7.1 Arguments

-id id

if this argument is supplied, id identifies a management connection previously returned
by the open command to which the operation should be applied. If it is omitted, the
connection returned by the last successful open command is used.

type

this argument specifies the type of managed object to be removed. It must be one of
the managed object type switches described in Section H.7.1, “Types of objects that
can be managed”

name

this argument specifies the name of the managed object to be removed.

sequence-number

is a number listed by the list command.

Dmish Scripting Interface

358M-Vault Administration Guide

-help

displays a synopsis of the commands available.

H.7.7.2 Results

On success this command returns the empty Tcl string.

H.7.7.3 Errors

On failure, the command provides an error message describing the problem.

H.8 Deleting entire subtrees

The dbulk tool can be used in clean mode to delete entire subtrees.

Caution: Read the caveats given in ???.

H.8.1 Using dbulk clean

To remove a subtree of the database, enter the following command line:

dbulk clean baseDN -db_directory pathname
[-maxfail n] [-force] [-descendants]

Note: The line is folded here for clarity.

The meanings of the parameters are as follows:

baseDN

This identifies the subtree to be removed (cleaned). The root entry may not be removed,
hence the base may be "" to indicate the root, only in conjunction with -descendants.

-db_directory pathname

This specifies the location of the GDAM database, for example,
/var/isode/dsa-db/gdam1

-maxfail n

This gives the maximum number of failed records which should be tolerated. When
this is exceeded the program aborts. The default is 9. Use 0 to abort on the first error.

-force

Entries that cannot be decoded normally cannot be deleted, as attribute indexes cannot
then be properly updated. This flag overrides that, possibly leaving indexes in an
inconsistent state.

-descendants

This removes all the subordinates of the base entry down to the bottom of the tree, but
does not remove the base entry itself.

Dmish Scripting Interface

359M-Vault Administration Guide

H.9 Examples

H.9.1 Creating and opening a Directory

#!/bin/sh
-*- tcl -*- \
exec dmish "$0" ${1+"$@"}

#This script sequentially:
o Creates a first level dsa
o Starts the newly created dsa
o Opens a management connection to dsa using simple
credentials
o Performs a simple (list all objects) operation
o Closes the management connection to dsa
o Stops the dsa

set dir "/tmp/dsa-db-example"
set name "cn=DSA,cn=eric,o=Isode Ltd,c=US"
set addr "Internet=eric+19991"
set user "cn=DSA Manager,$name"
set passwd "GARY123"
set prefix "c=US"

#Create a first level dsa
if {[catch {dmi create \
 -dsa_dir "$dir" \
 -name "$name" \
 -address "$addr" \
 -password "$passwd" \
 -prefix "$prefix"} err]} {
 puts "dsa ($dir) not created: $err"
 return "$err"
} else {
 puts "dsa ($dir) created"
}

#Start the newly created dsa
if {[catch {dmi start -dsa_dir "$dir"} err]} {
 puts "dsa ($dir) not started: $err"
 return "$err"
} else {
 puts "dsa ($dir) started"
}

#Sleep to allow dsa to start
after 5000

#Open management connection to dsa using simple credentials
if {[catch {dmi open \
 -call "$addr" \
 -user "$user" \
 -password "$passwd" \
 -simple} err]} {
 puts "dsa connection not opened ($addr) : $err"
 return "$err"
} else {
 puts "dsa connection opened ($addr)"
}

Dmish Scripting Interface

360M-Vault Administration Guide

#Perform operation
if {[catch {dmi list} err]} {
 puts "dmi list failed: $err"
 return "$err"
} else {
 puts "$err"
}

#Close management connection to dsa
if {[catch {dmi close} err]} {
 puts "dsa ($dir) not closed: $err"
 return "$err"
} else {
 puts "dsa ($dir) closed"
}

#Stop the dsa
if {[catch {dmi stop \
 -dsa_dir "$dir"} err]} {
 puts "dsa ($dir) not stopped: $err"
 return "$err"
} else {
 puts "dsa ($dir) stopped"
}

H.9.2 Establishing a consumer shadowing agreement

#!/bin/sh
-*- tcl -*- \
exec dmish "$0" ${1+"$@"}

#Pick up authcon information
lappend auto_path $isode_libpath/authconlib/scripts

#Consumer host information
set consumer(setup) Internet=eric+29995|LDAP=eric+29990
set consumer(addr) Internet=eric+29995
set consumer(user) "<cn=DSA Manager, cn=DSAC, cn=eric, o=Isode Ltd, c=US>"
set consumer(passwd) "GARY123"
set consumer(name) "cn=DSAC, cn=eric, o=Isode Ltd, c=US"
set consumer(dir) "/var/isode/dsa-dbc"
set consumer(prefix) "cn=DSAC, cn=eric, o=Isode Ltd, c=US"
set consumer(supnme) "<c=US>"
set consumer(supadr) "Internet=eric+29996"

#Location of templates used in adding objects
set template_dir "/path/to/script/dmish/templates"

#Shadow departments to be consumed from master. A template MUST
#already exist in template_dir for each of these departments.
set departments {{Engineering}\
 {Sales}\
 }

#Create a consumer dsa
if {[catch {dmi create \
 -dsa_dir "$consumer(dir)" \
 -name "$consumer(name)" \
 -address "$consumer(setup)" \
 -password "$consumer(passwd)" \
 -prefix "$consumer(prefix)" \
 -superior_name "$consumer(supnme)" \
 -superior_address "$consumer(supadr)"} err]} {

Dmish Scripting Interface

361M-Vault Administration Guide

 puts "dsa ($consumer(dir)) not created: $err"
 return "$err"
} else {
 puts "dsa ($consumer(dir)) created"
}

#Start the newly created consumer dsa
if {[catch {dmi start \
 -dsa_dir "$consumer(dir)"} err]} {
 puts "dsa ($consumer(dir)) not started: $err"
 return "$err"
} else {
 puts "dsa ($consumer(dir)) started"
}

#Sleep to allow dsa to start
after 5000

#Open management connection to dsa using simple credentials
if {[catch {dmi open \
 -call "$consumer(addr)" \
 -user "$consumer(user)" \
 -password "$consumer(passwd)" \
 -simple} err]} {
 puts "dsa connection not opened ($consumer(addr)) : $err"
 return "$err"
} else {
 puts "dsa connection opened ($consumer(addr))"
 set id "$err"
}

Read the local authcon object for this DSA
set myconsumer [pacm mapLocal [dname "$consumer(name)"]]

#Set the auth level for supplier-initiated as simple
$myconsumer configure -prot disp -req resp {simple}

#Set password information for consumer
$myconsumer configure -prot disp -password remote_init "supplier"
$myconsumer configure -prot disp -password resp "consumer"

#Commit authentication information into dsa
$myconsumer commit

#Add a GDAM (database) object for consumed data to be stored
if {[catch {dmi add \
 -id $id \
 -db \
 -template "$template_dir/consumer/Consumer-DB.template" \
 -noedit {-noedit} } err]} {
 puts "object (db) not added: $err"
 return "$err"
} else {
 puts "object (db) added"
}

#Add a shadow consumer agreement for each department
foreach dept $departments {
 if {[catch {dmi add \
 -id $id \
 -consumer \
 -template "$template_dir/consumer/$dept-CONSUMER.template" \
 -noedit {-noedit} } err]} {
 puts "object (consumer $dept) not added: $err"
 return "$err"
 } else {

Dmish Scripting Interface

362M-Vault Administration Guide

 puts "object (consumer $dept) added"
 }
}

#Close management connection to dsa
if {[catch {dmi close} err]} {
 puts "dsa ($consumer(dir)) not closed: $err"
 return "$err"
} else {
 puts "dsa ($consumer(dir)) closed"
}

H.9.3 Establishing a supplier shadowing agreement

#!/bin/sh
-*- tcl -*- \
exec dmish "$0" ${1+"$@"}

#Pick up authcon information
lappend auto_path $isode_libpath/authconlib/scripts

#Supplier host information
set supplier(setup) Internet=eric+29996|LDAP=eric+29991
set supplier(addr) Internet=eric+29996
set supplier(user) "<cn=DSA Manager,cn=DSAS,cn=eric,o=Isode Ltd, c=US>"
set supplier(passwd) "GARY123"
set supplier(name) "cn=DSAS, cn=eric, o=Isode Ltd, c=US"
set supplier(dir) "/var/isode/dsa-dbs"
set supplier(prefix) "c=US"

#Location of templates used in adding objects
set template_dir "/path/to/script/dmish/templates"

#Shadow departments to be supplied from master. A template MUST
#already exist in template_dir for each of these departments.
set departments {{Engineering}\
 {Sales}\
 }

#Create a supplier dsa
if {[catch {dmi create \
 -dsa_dir "$supplier(dir)" \
 -name "$supplier(name)" \
 -address "$supplier(setup)" \
 -password "$supplier(passwd)" \
 -prefix "$supplier(prefix)"} err]} {
 puts "dsa ($supplier(dir)) not created: $err"
 return "$err"
} else {
 puts "dsa ($supplier(dir)) created"
}

#Start the newly created supplier dsa
if {[catch {dmi start \
 -dsa_dir "$supplier(dir)"} err]} {
 puts "dsa ($supplier(dir)) not started: $err"
 return "$err"
} else {
 puts "dsa ($supplier(dir)) started"
}

#Sleep to allow dsa to start
after 5000

Dmish Scripting Interface

363M-Vault Administration Guide

#Open management connection to dsa using simple credentials
if {[catch {dmi open \
 -call "$supplier(addr)" \
 -user "$supplier(user)" \
 -password "$supplier(passwd)" \
 -simple} err]} {
 puts "dsa connection not opened ($supplier(addr)) : $err"
 return "$err"
} else {
 puts "dsa connection opened ($supplier(addr))"
 set id "$err"
}

Read the local authcon object for this DSA
set mysupplier [pacm mapLocal [dname "$supplier(name)"]]

#Set the auth level for supplier-initiated as simple
$mysupplier configure -prot disp -req remote_resp {simple}

#Set password information for supplier
$mysupplier configure -prot disp -password remote_resp "consumer"
$mysupplier configure -prot disp -password init "supplier"

#Commit authentication information into dsa
$mysupplier commit

#Add a GDAM (database) object for consumed data to be stored
if {[catch {dmi add \
 -id $id \
 -db \
 -template "$template_dir/supplier/Supplier-DB.template" \
 -noedit {-noedit} } err]} {
 puts "object (db) not added: $err"
 return "$err"
} else {
 puts "object (db) added"
}

#Add a naming context for each department to be shadowed
foreach dept $departments {
 if {[catch {dmi add \
 -id $id \
 -nc \
 -template "$template_dir/supplier/$dept-NC.template" \
 -noedit {-noedit} } err]} {
 puts "object (nc $dept) not added: $err"
 return "$err"
 } else {
 puts "object (nc $dept) added"
 }
}

#Convert each naming context to an administrative point ACSA/CASA
foreach dept $departments {
 if {[catch {dmi add \
 -id $id \
 -adm \
 -template "$template_dir/supplier/$dept-ACSA.template" \
 -noedit {-noedit} } err]} {
 puts "object (adm $dept) not added: $err"
 return "$err"
 } else {
 puts "object (adm $dept) added"
 }
}

Dmish Scripting Interface

364M-Vault Administration Guide

#Add a shadow supplier agreement for each administrative point
foreach dept $departments {
 if {[catch {dmi add \
 -id $id \
 -supplier \
 -template "$template_dir/supplier/$dept-SUPPLIER.template" \
 -noedit {-noedit} } err]} {
 puts "object (supplier $dept) not added: $err"
 return "$err"
 } else {
 puts "object (supplier $dept) added"
 }
}

#Close management connection to dsa
if {[catch {dmi close} err]} {
 puts "dsa ($supplier(dir)) not closed: $err"
 return "$err"
} else {
 puts "dsa ($supplier(dir)) closed"
}

H.10 Templated DSA creation

M-Vault Console uses a template-based mechanism is used to determine the structure and
initial content when creating a Directory. The same mechanism is used by the dsa-setup
utility, which can be run from the command-line. Because the utility does not rely on a
graphics display, it is suitable for use in script or batch files, or even when used to create
configurations where no operator interaction is required at all.

The process of templated DSA creation, whether using M-Vault Console or dsa-setup
involves the following steps:

1. Creating and starting an empty DSA that has no accounts other than the superuser
account enabled, which requires:

• the directory server’s name and presentation address

• the file system location for the Directory Server

2. Utilising the superuser account, connecting to the DSA and load information into it,
including:

• initial naming contexts

• initial set of user data

• passwords for accounts other than the superuser

• Global Access Control information

3. creating bind profiles that may be used by applications such as M-Vault Console and
Sodium to connect to the directory

4. (optionally) disabling the superuser account

The information used in the above process is derived from a set of files which together
form the DSA creation template. The files form a template, since the information they
contain is subject to being overridden or modified by input provided by the operator at
DSA creation time.

Dmish Scripting Interface

365M-Vault Administration Guide

The following section provides a reference for the template files which are used when
creating DSAs.

H.10.1 Files used by the template mechanism

The following files are used to determine the initial configuration of a Directory Server
created using either M-Vault Console or the dsa-setup script (note that when creating
mirror or shadow directory servers, the templates are not used, since in these cases the
structure and contents of the new directory are copied from the old one):

• an XML file containing the Directory Server creation template

• an XML file containing Global Access Control (GAC) information

• an file containing LDIF data which represents entries that are to be loaded into the
Directory once it has been created

The creation mechanism searches for any template files in the directory dsa-setup, first
below (ETCDIR) and then below (SHAREDIR). Some predefined templates (those which
appear when you use M-Vault Console to create a new DSA) are supplied in
(SHAREDIR)/dsa-setup. If you want to modify the existing templates, or create new
ones, then you should create files in (ETCDIR)/dsa-setup; these will be used in preference
to any files of the same name that are in (SHAREDIR)/dsa-setup.

Depending on what other Isode products are installed on the system, there may be other
directories in (SHAREDIR) which contain templates, such as mhs-dsa-setup.

H.10.1.1 Directory Server Creation Template

The Directory Server Creation template contains information about the structure of the
directory, and also contains references to the GAC and LDIF files. The contents of the
template file are described below:

H.10.1.1.1 <dsa-creation-template> element

This is the root XML element. It has a single mandatory attribute of label. For example:

<dsa-creation-template label="Default DSA Configuration">

The XML file must contain a single instance of this element.

H.10.1.1.2 <ldif> element

This element specifies the name of an LDIF file which is to be loaded into the directory
once the server has been created. There is a single mandatory attribute of file which
should be the filename (no path; the file is assumed to be in the same folder as the template
file).

The DNs in the file are subject to relocation according to information provided by the
operator during the creation process. For example, if the initial "Groups subtree location"
specified in the template is set to "o=groups,c=xx", and the operator overrides this value
to "o=groups,cn=test,c=gb", then all the groups in the LDIF file will be created underneath
"o=groups,cn=test,c=gb".

The information in the LDIF file must be consistent with the information in the template
and GAC files. For example, if the initial user is missing in this file, then no initial user
will be created and the operator will be unable to bind to the directory and configure other
users. Or if a group is present in the GAC file but not in the LDIF file, then that group will
not be created and the access control defined for that group may be lost.

Example:

Dmish Scripting Interface

366M-Vault Administration Guide

<ldif file="simple_dump.ldif"/>

The XML file must contain a single instance of this element.

H.10.1.1.3 <gac> element

This specifies the name of an XML file containing Global Access Control that is to be
loaded into the directory once the it has been created. There is a single mandatory attribute
of file which should be the filename (no path; the file is assumed to be in the same folder
as the template file).

DNs inside this file are relocated in the same way as for the <ldif> file. For example:

<gac file="simple_gac.xml"/>

The XML file must contain a single instance of this element.

H.10.1.1.4 <dn-param> element

The data loaded into the directory after the server has been created is specified in the
template, LDIF and GAC files. The dn-param element provides a way to prompt and
allow the operator to override the default location specified in these files with a different
location.

Any part of a DN specified in the files can be relocated. Subtrees may be relocated pretty
much without limit. It is not necessary to maintain the default hierarchy. However, if it is
required that the DN is restricted to a certain subtree, then the attribute sub can be used
with the value being the subtree that this DN needs to be a part of.

It is also possible to relocate individual entries, either to put them in some other location,
or just to rename them - for example, to rename individual users.

It is also possible to rename from one RDN-type to another - for example, to rename from
c=GB to o=Isode. RDN-type changes can be prevented by specifying the attribute
<ocs="fixed"/>. If the objectclass specified in the LDIF for a DN is not appropriate for
certain RDN types, then care needs to be taken when allowing the operator to modify these
types, since it could lead to objectclass errors.

When the data is loaded into the directory, any dummy entries that are required but not
specified will also be loaded.

This element may appear multiple times, once for each relocation. It has the following
attributes:

• label (mandatory). The label used to identify the parameter when requesting operator
input

• init (mandatory). The DN to relocate. The operator can override this DN with a different
DN, which will replace the original DN with the new DN wherever it occurs in the
template, LDIF and GAC files.

• sub (optional). If it is required that the DN is restricted to a certain subtree, then this
attribute should be used with a value of the subtree that the DN needs to be a part of.

• ocs (optional). To prevent RDN-type changes, this attribute should be used with a value
of "fixed".

Examples:

<dn-param label="Base DN" init="c=xx"/>
<dn-param label="Group DN" init="o=group,c=xx" ocs="fixed"/>

Dmish Scripting Interface

367M-Vault Administration Guide

<dn-param label="Initial Directory User"
init="cn=Thomas Atkins,o=users,c=xx" sub="o=users,c=xx"/>

The XML file may contain any number of these elements.

H.10.1.1.5 <dsa> element

This is the distinguished name of the DSA itself. The name is subject to being overridden
by the operator. It is not necessary for there to be a real entry in the DSA with this DN.
The element has a single mandatory attribute of dn which must be a valid DN.

Example:

<dsa dn="cn=dsa,c=xx"/>

The XML file must contain a single instance of this element.

H.10.1.1.6 <naming-context> element

This element identifies the location of a naming context inside the directory. If the DN
contains multiple RDNs, then glue entries will be created for any non-existing parent entries
of the naming context. For example, creation of the naming context o=Isode,c=GB requires
that the existence of c=GB, and so if no such entry exists, then a glue entry for c=GB will
be created.

Note that any (non glue) entry which is created directly below the root entry will be a
naming context, whether or not it is specified as a <naming-context>.

This element has the following attributes:

• dn (mandatory). The DN of the naming context. This may not be the root DN

• gdam (optional). The name of a GDAM to be used for the naming context, which may
be overridden by the operator. If not present, the GDAM will be created. If this attribute
is absent, then the default GDAM "gdam1" will be used.

Examples:

<naming-context dn="c=xx"/>
<naming-context dn="ou=Staff,o=Isode,c=GB"/>
<naming-context dn="o=Isode" gdam="isodegdam"/>

The XML file may contain any number of these elements.

H.10.1.1.7 <create-entry> element

This element identifies the distinguished name of an entry that must be present in the
Directory. If the DN contains multiple RDNs, then glue entries will be created for any
non-existing parent entries of the naming context. For example, creation of the naming
context o=Isode,c=GB requires that the existence of c=GB, and so if no such entry exists,
then a glue entry for c=GB will be created.

This element is ignored if the entry already exists as a result of a naming-context element
for the same DN, or as a result of another relocation.

This element has the following attribute

• dn (mandatory). The DN of the entry.

Examples:

Dmish Scripting Interface

368M-Vault Administration Guide

<create-entry dn="c=xx"/>
<create-entry dn="ou=Staff,o=Isode,c=GB"/>
<create-entry dn="o=Isode" gdam="isodegdam"/>

The XML file may contain any number of these elements.

H.10.1.1.8 <admin-point> element

This element identifies a DN which is to be converted to an admin point. The DN of the
entry must already exist as a result of a <naming-context> or a <create-entry> or
another relocation.

Note that naming contexts are by default admin points, even when the <admin-point>
element is not used.

This element has the following attributes:

• dn (mandatory). The DN of the admin point.

• bac (optional). Should be set to "true" for Basic Access Control. If the attribute is absent,
or set to "false", then the admin point is created with Simple Access Control.

Examples:

<admin-point dn="c=xx"/>
<admin-point dn="ou=Staff,o=Isode,c=GB" bac="true"/>
<admin-point dn="o=Isode" bac="false"/>

The XML file may contain any number of these elements.

H.10.1.1.9 <manager> element

This element identifies the user DN for the bind profile used to manage the DSA. If no
<manager> is specified, then the superuser is left active and the bind profile used to manage
the DSA will contain the DN of the superuser (see below).

This element has the following attributes:

• dn (mandatory). The DN used to identify the manager.

Example:

<manager dn="cn=DSA Manager,o=users,c=xx"/>

The XML file may contain only one of these elements.

H.10.1.1.10 <create-profile> element

This element identifies a user DN for a bind profile that can be used to bind in Sodium
etc., but is not intended to be used for managing the DSA using M-Vault Console.

This element has the following attributes:

• dn (mandatory). The DN used to identify user DN.

Example:

<manager dn="cn=DSA Manager,o=users,c=xx"/>

The XML file may contain any number of these elements.

Dmish Scripting Interface

369M-Vault Administration Guide

H.10.1.1.11 <pw-param> element

This element can be used to generate passwords for any user entries loaded from the LDIF
file.

This element may appear multiple times; once for each user entry. If a user entry is present
in the LDIF file and there is no matching <pw-param> element, then the user entry will
be loaded with no password. However, in the case of <manager> or <create-profile>
elements, it is mandatory that a corresponding <pw-param> be specified.

If a <pw-param> is specified for a DN which has no matching entry in the LDIF file, then
it is ignored.

This element has the following attributes:

• label (mandatory). The label used to identify the user when requesting operator input.

• dn (mandatory). The user DN which this password applies to.

• length (optional). The length of the generated random password. If this is not specified,
a default value of 9 us used.

Examples:

<pw-param label="Initial Directory User"
dn="cn=Fred Smith,o=Users,c=xx"/>
<pw-param label="General User"
dn="cn=Fred Smith,o=Users,c=xx" length="5"/>

The XML file may contain any number of these elements.

H.10.1.1.12 <superuser> element

For the purposes of DSA creation, a special superuser role is enabled in the DSA, which
is not subject to any access control. If a <manager> is specified in the template file, then
by default the superuser account will be removed.

If no <manager> is specified, then the superuser account is not removed, and will be used
in the bind profile used to manage the DSA.

The <superuser> element has two purposes: firstly it allows you to prevent the superuser
account from being removed, even when a <manager> is specified, and secondly it allows
you to specify what the superuser password is (whether or not a <manager> is specified).

This element has the following attributes:

• pw (mandatory). The password to be used for the superuser.

Examples:

<superuser pw=""/>
<superuser pw="secret"/>

The XML file may contain no more than one of these elements.

H.10.1.1.13 <opt-group> element

This element is used to allow the operator to choose to omit certain groups defined in the
LDIF or GAC files when creating a new Directory Server. Stripping out a group may lead
to the stripping out of items that use the groups and rules used in such items.

This element has the following attributes:

Dmish Scripting Interface

370M-Vault Administration Guide

• dn (mandatory). The DN of the group. If this DN does not exist in the LDIF and/or GAC
file, then no action is taken.

• sel (optional). The initial selection status of this group. A value of "true" means that the
group is to be selected when first shown. If the attribute is absent, or has a value of
"false", then group will be de-selected when first shown. The operator can override the
initial selection.

Examples:

<opt-group dn="cn=Data Managers,o=groups,c=xx"/>
<opt-group dn="cn=CRL Writers,o=groups,c=xx" sel="true"/>

The XML file may contain any number of these elements, one for each group that is optional.

H.10.1.1.14 <opt-rule> element

This element is used to allow the operator to choose to omit certain items defined in the
GAC file when creating a new Directory Server.

This element has the following attributes:

• label (mandatory). The label used to identify the item when prompting the operator for
input.

• prec (mandatory). The integer precedence of the item in t he GAC file. This is used to
uniquely identify the item from all the items in the GAC file, which means that all
optional items in a GAC file should have mutually distinct precedences. If no item exists
in the GAC file with this precedence, then the element is ignored.

• sel (optional).The initial selection status of the item. A value of "true" means that the
item should be selected when first shown. If the attribute is absent, or has a value of
"false", then the item will be de-selected when first shown.

Examples:

<opt-rule
label="Everyone has read access by default"
prec="0"
sel="true"/>
<opt-rule
label="Only authenticated users have read access by default"
prec="2"/>

The XML file may contain any number of these elements, one for each item that is optional.

H.10.1.1.15 <opt-rule-limit> element

This element is used to restrict the operator from selecting conflicting items, or to force
the operator to select certain items defined in the <opt-rule> elements.

This element has the following attributes, at least one of which must be present:

• at-least-one (optional). A comma separated list of precedence values, of which at least
one must be selected by the operator. Each value in the list must be present in an
<opt-rule> element.

• at-most-one (optional). A comma separated list of precedence values, of which only one
may be selected by the operator. Each item in the list must be present in an <opt-rule>
element.

Examples:

Dmish Scripting Interface

371M-Vault Administration Guide

<opt-rule-limit at-least-one="0,2"/>
<opt-rule-limit at-most-one="1,3,4"/>
<opt-rule-limit at-least-one="0,2" at-most-one="5,6"/>

The XML file may contain any number of these elements.

H.10.1.1.16 <attr-to-index> element

This element is used to create an index in the initial GDAM database. Indexes are described
in Section 4.6.4, “Database indexes”. It has the following attributes:

• type (mandatory). The name of the attribute for which an index should be created

• match (optional). The type of index to create, which may be:

• eq for an Equality index

• sub for a Substring index

• approx for an Approximate index

• pres for a Presence index

If no match is specified, then an Equality index will be created.

Examples:

<attr-to-index type="mail"/>
<attr-to-index type="surname" match="pres"/>

The XML file may contain any number of these elements.

H.10.1.2 Global Access Control information

Global Access Control (GAC) provides a means of describing a set of rules and roles which
control access to data inside the directory. A GAC configuration can be dumped to or
loaded from an XML file, and will be translated by Isode client applications such as M-Vault
Console into Simplified Access Control which are used inside the directory.

During templated DSA creation, an XML file containing GAC configuration is used to
specify the initial Global Access Control (from which is derived Simplified Access Control)
inside the directory. The DNs inside the LDIF file are subject to relocation, based on
responses that may be given by the operator.

The name of the GAC file is specified by the <gac> element inside the Directory Server
Creation template file.

H.10.1.3 LDIF data file

A set of data may be loaded into the directory at creation time, by loading up the contents
of an LDIF file. The DNs inside the LDIF file are subject to relocation, based on responses
that may be given by the operator.

The name of the LDIF file is specified by the <ldif> element inside the Directory Server
Creation template file.

H.10.2 dsa-setup utility

dsa-setup is implemented as a script which is invoked from the command line. It has the
following options:

Dmish Scripting Interface

372M-Vault Administration Guide

• create - create and start a standalone Directory Server. This will also load specific data
and global access control in to the Directory from the template files, and update the bind
profile file.

• delete - shut down and delete a Directory Server, removing the databases from disk, as
well as removing its bind profile.

• shadow - create a new Directory Server which has consumer agreements that shadow
all or some of a "supplier" Directory Server.

• mirror - create a new Directory Server which is a new failover mirror of an existing
failover master Directory Server.

When using the create option, then the information from the specified template files will
be used. Unless the -noprompt option is used, then the operator will be prompted to accept
or modify various options.

Under Windows, open a command window (using “Run as Administrator” on those
platforms which require it), and run the script dsa-setup.bat, which will have been installed
by default into the folder (SBINDIR) on the installation drive. The example below uses
-noprompt which means that no user input is required during the creation process:

C:\Program Files\Isode\bin>dsa-setup.bat create
 -ppfile secret.txt -noprompt "C:\mydsa" simple.xml
CREATING A STANDALONE DSA WITH THE FOLLOWING DATA:
Bind profile passphrase stored in file
 [secret.txt]
DSA folder
 [C:\mydsa]
XML template file
 [C:\Program Files\Isode\share\dsa-setup\simple.xml]
Presentation address
 [URI+0000+URL+itot://server:19999|URI+0001+URL+ldap://server:19389]
Base DN, for example: Country (c=gb),
 International Organization (o=isode),
 Organization (o=isode,c=gb), or
 Internet Domain (dc=isode,dc=com)
 [c=xx]
DSA DN: This identifies the DSA when working with several DSAs.
 It must be unique within the group of DSAs that you plan to
 interact with using M-Vault Console. For a standalone DSA,
 you may simply call it cn=DSA. It is not necessary for there
 to be a real entry with this DN.
 [cn=DSA,c=xx]
Users subtree location: This can be put either under the base
 DN (as below), or if you prefer, at the root (o=users)
 [o=users,c=xx]
Groups subtree location: This can be put either under the base
 DN (as below), or if you prefer, at the root (o=groups)
 [o=groups,c=xx]
Initial Directory User: This user is put into all the initial
 roles, and the bind profile created will bind as this user.
 Afterwards you can create more users and change which users
 are put in which roles. You should change the common name
 field to a suitable value for a real person.
 [cn=Thomas Atkins,o=users,c=xx]
Optional rules:
 1: [x] Everyone has read access by default
 2: [] Only authenticated users have read access by default
 3: [x] Allow users to modify their own entry's attributes
 4: [x] Allow users to modify their own password
Optional groups:
 1: [x] Data Managers Group
 2: [] CRL Writers Group
 3: [] Certificate Writers Group
 4: [] CA Managers Group

Dmish Scripting Interface

373M-Vault Administration Guide

Password Hashing
 [Clear Text]
Manager bind profile name
 [cn=DSA,c=xx / Thomas Atkins]
Password for Initial Directory User (cn=Thomas Atkins,o=users,c=xx)
 [PtjjY4pQs]
CREATING ...
SUCCESS

C:\Program Files\Isode\bin>

Under Unix, dsa-setup is started by running dsa-setup which will have been installed into
(SBINDIR). For example:

% /opt/isode/sbin/dsa-setup delete
 -ppfile secret.txt
 -dsa "cn=dsa,o=isode" /var/isode/dsa-db
SHUTTING DOWN AND DELETING THE DSA WITH THE FOLLOWING DATA:
Bind profile passphrase stored in file
 [secret.txt]
DSA Folder
 [/var/isode/dsa-db]
DSA DN
 [cn=dsa,o=isode]
Press 'q' to stop now or any other key to continue:

DELETING ...
SUCCESS

Dmish Scripting Interface

374M-Vault Administration Guide

Appendix I References
The documents listed in this appendix provide references to the appropriate standards and
other sources of information.

If documents can be obtained electronically, the location is stated as part of the reference.
For other documents, please see Section I.4, “Obtaining documents”.

I.1 RFCs

RFC 5246
The Transport Layer Security (TLS) Protocol Version 1.2. T. Dierks, August 2008

RFC 2696
LDAP Control Extension for Simple Paged Results Manipulation. C. Weider, A.
Herron, A. Anantha, T. Howes, September 1999

RFC 2849
The LDAP Data Interchange Format (LDIF) - Technical Specification. G. Good. June
2000.

RFC 2891
LDAP Control Extension for Server Side Sorting of Search Results. T. Howes, M.
Wahl, A. Anantha. August 2000.

RFC 3045
Storing Vendor Information in the LDAP root DSE. M. Meredith. January 2001.

RFC 3062
LDAP Password Modify Extended Operation. K. Zeilenga. February 2001.

RFC 3268
Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security (TLS).
P. Chown. June 2002.

RFC 3296
Named Subordinate References in Lightweight Directory Access Protocol (LDAP)
Directories. K. Zeilenga. July 2002.

RFC 3672
Subentries in the Lightweight Directory Access Protocol (LDAP). K. Zeilenga.
December 2003.

RFC 3673
Lightweight Directory Access Protocol version 3 (LDAPv3): All Operational Attributes.
K. Zeilenga. December 2003.

RFC 3986
Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee, R. Fielding, L.
Masinter. January 2005.

RFC 4422
Simple Authentication and Security Layer (SASL). A. Melnikov, K. Zeilenga. June
2006.

RFC 4511
Lightweight Directory Access Protocol (LDAP): The Protocol. J. Sermersheim. June
2006.

RFC 4512
Lightweight Directory Access Protocol (LDAP): Directory Information Models. K.
Zeilenga. June 2006.

References

375M-Vault Administration Guide

RFC 4513
Lightweight Directory Access Protocol (LDAP): Authentication Methods and Security
Mechanisms. R. Harrison. June 2006.

RFC 4515
Lightweight Directory Access Protocol (LDAP): String Representation of Search
Filters. M. Smith, T. Howes. June 2006.

RFC 4517
(LDAP): Syntaxes and Matching Rules. S. Legg, Ed. June 2006

RFC 4519
Lightweight Directory Access Protocol (LDAP): Schema for User Applications. A.
Sciberras. June 2006.

RFC 4524
COSINE LDAP/X.500 Schema. K. Zeilenga. June 2006.

RFC 4526
Lightweight Directory Access Protocol (LDAP) Absolute True and False Filters. K.
Zeilenga. June 2006.

RFC 4529
Requesting Attributes by Object Class in the Lightweight Directory Access Protocol.
K. Zeilenga. June 2006.

RFC 4532
Lightweight Directory Access Protocol (LDAP) "Who am I?" Operation. K. Zeilenga.
June 2006.

RFC 5020
Lightweight Directory Access Protocol (LDAP) entryDN Operational Attribute. K.
Zeilenga. August 2007.

RFC 5803
Lightweight Directory Access Protocol (LDAP) Schema for Storing Salted Challenge
Response Authentication Mechanism (SCRAM) Secrets. A. Melnikov. July 2010.

I.2 Recommendations and standards

ISO 639:1988
Code for the Representation of Names of Languages.

ISO 3166:1988
Codes for the Representation of Names of Countries.

ISO/IEC 9075-3:1992 (ANSI X3.135-1992)
Database Language SQL - Part 3: Call-Level Interface.

ISO/IEC DIS 10181-2.2
Information Technology — Open Systems Interconnection— Security Frameworks for
Open Systems: Authentication Framework.

ISO/IEC DIS 11586-1
Information technology — Open Systems Interconnection — Generic Upper Layers
Security — Part 1: Overview, Models and Notations.

ISO/IEC JTC1/SC 21/N 9294
Draft Technical Corrigenda to Rec. X.500 | ISO/IEC 9504 resulting from Defect
Reports 9594/128.

ITU-T Rec. X.208(1988) | ISO 8824
Information Processing Systems — Open Systems Interconnection — Specification of
Abstract Syntax Notation One (ASN.1).

References

376M-Vault Administration Guide

ITU-T Rec. X.500(2008) | ISO/IEC 9594-1:2008
Information Technology — Open Systems Interconnection — The Directory: Overview
of Concepts, Models, and Services.

ITU-T Rec. X.501(2008) | ISO/IEC 9594-2:2008
Information Technology — Open Systems Interconnection — The Directory: Models.

ITU-T Rec. X.511(2008) | ISO/IEC 9594-3:2008
Information Technology — Open Systems Interconnection — The Directory: Abstract
Service Definition.

ITU-T Rec. X.518(2008) | ISO/IEC 9594-4:2008
Information Technology — Open Systems Interconnection — The Directory: Procedures
for Distributed Operations.

ITU-T Rec. X.519(2008) | ISO/IEC 9594-5:2008
Information Technology — Open Systems Interconnection — The Directory: Protocol
Specifications.

ITU-T Rec. X.520(2008) | ISO/IEC 9594-6:2008
Information Technology — Open Systems Interconnection — The Directory: Selected
Attribute Types.

ITU-T Rec. X.521(2008) | ISO/IEC 9594-7:2008
Information Technology — Open Systems Interconnection — The Directory: Selected
Object Classes.

ITU-T Rec. X.509(2008) | ISO/IEC 9594-8:2008
Information Technology — Open Systems Interconnection — The Directory:
Authentication Framework.

ITU-T Rec. X.525(2008) | ISO/IEC 9594-9:2008
Information Technology — Open Systems Interconnection — The Directory:
Replication.

ITU-T Rec. X.721(1992) | ISO/IEC 10165-2
Information Technology — Open Systems Interconnection — Structure of Management
Information: Definition of Management Information.

ITU-T Rec. X.800(1991) | ISO 7498-2
Information processing systems — Open Systems Interconnection — Basic Reference
Model — Part 2: Security architecture.

I.3 Other publications

Chadwick, D. W. Understanding X.500 (The Directory). International Thompson Publishing,
July 1996. ISBN 1-85032-281-3.

Gardner, Ella and Ginsburg, Elliot. Defense Message System Unclassified Directory Schema.
Mitre Corporation, Washington C3 Center. 5 February 1993.

MIT. Kerberos: The Network Authentication Protocol. http://web.mit.edu/Kerberos/.

OIW Implementor's Workshop. Stable Implementation Agreements for Open Systems
Interconnection Protocols: Part 12 - OS Security. September 1994.
ftp://nemo.ncsl.nist.gov/pub/oiw/agreements/12S_9409.ps

Ousterhout, J. An X11 Toolkit Based on the Tcl Language. Winter 1991 USENIX Conference
Proceedings. ftp://ftp.scriptics.com/pub/tcl/doc/tkUsenix91.ps

Ousterhout, J. Tcl: An Embeddable Command Language. Winter 1990 USENIX Conference
Proceedings. ftp://ftp.scriptics.com/pub/tcl/doc/tclUsenix90.ps

References

377M-Vault Administration Guide

http://web.mit.edu/Kerberos/

Ousterhout, J. Tcl and the Tk Toolkit. Addison-Wesley, 1994. ISBN 0-201-63337-X.

Roe, M. PASSWORD R2.5: Certification Authority Requirements. Nov. 1992.
ftp://cs.ucl.ac.uk/password/r25.ps

RSA Data Security Inc. PKCS #1: RSA Encryption Standard. Nov. 1993.

RSA Data Security Inc. PKCS #6: Extended-Certificate Syntax Standard. Nov. 1993.

RSA Data Security Inc. PKCS #7: Cryptographic Message Syntax Standard. Nov. 1993.

RSA Data Security Inc. PKCS #8: Private-Key Information Syntax Standard. Nov. 1993.

RSA Data Security Inc. PKCS #9: Selected Attribute Types. Nov. 1993.

versit Consortium. vCard. The Electronic Business Card Version 2.1. September 18, 1996.
http://www.imc.org/pdi/vcard-21.ps

Welch, B. B. Practical Programming in Tcl and Tk. Prentice Hall. ISBN 0136168302.

I.4 Obtaining documents

I.4.1 ISO/IEC documents

ISO/IEC standards and draft documents may be obtained from:

ISO Central Secretariat
International Organization for Standardization (ISO)
1, rue de Varembé
Case postale 56
CH-1211 Geneva 20
Switzerland

Telephone: +41 22 749 01 11

Fax: +41 22 733 34 30

Web: http://www.iso.org/

I.4.2 ITU-T (CCITT) documents

International Telecommunications Union
Place des Nations
CH-1211 Geneva 20
Switzerland

Telephone: +41 22 730 61 41 Fax: +41 22 730 51 94

Email: sales@itu.int

Web: http://www.itu.int/

I.4.3 RFCs

Electronic copies of RFCs are available from the following servers:

References

378M-Vault Administration Guide

http://www.iso.org/
http://www.itu.int/

• http://ftp.isi.edu/in-notes/

• http://www.rfc-editor.org/

References

379M-Vault Administration Guide

http://ftp.isi.edu/in-notes/
http://www.rfc-editor.org/

Glossary
AAA

Autonomous Administrative Area. See Administrative area.

AAP
Autonomous Administrative Point. See Administrative point .

Abstract object class
An object class used only by the Directory, not a classification of objects in the real world. See Alias and Top .

Abstract service
See Directory abstract service (DAS).

Abstract Syntax Notation One (ASN.1)
A notation for describing and defining data syntax.

Access control
A security service aimed at preventing unauthorized access to a capability. Once an identity has been established (see
Authentication), access control determines what data and operations may be accessed by that identity.

Access Control Information (ACI)
ACI items define the access control policy for an entry. See also Access control.

Access Control Inner Area (ACIA)
A subtree of the DIT inside a specific administrative area whose entries share the same access control administration.

Access Control Specific Area (ACSA)
A subtree of the DIT whose entries share the same access control administration.

Access Point
This uniquely identifies the DSA. It contains the DSA’s Distinguished Name, Presentation Address and an optional
set of protocol information. See also Knowledge reference.

ACI
See Access control information .

ACIA
See Access control inner area.

ACSA
See Access control specific area.

Address
A label which identifies an object by its location. See IP address and Presentation Address.

ADMD
See Administration Management Domain.

Administration Management Domain (ADMD)
An arrangement of MTAs, usually managed by a public service provider such as a PTT authority.

Administrative area
A subtree of the DIT whose entries share administration.

Administrative authority
The agent of a domain management organization which has responsibility for administering the domain, or the authority
under which the agent operates.

Administrative model
The model used to define how authority is delegated in the DIT.

Glossary

380M-Vault Administration Guide

Administrative point
The root of the subtree formed by an administrative area.

AET
Application Entity Title. See Application entity.

Alias
An abstract object class covering those entries which have an aliased entry name; this aliased entry name contains
the Distinguished Name of another entry to which the alias points.

Application context
A set of rules governing the interactions between application entities over an association.

Application entity
The part of an application process concerned with interactions with others.

ARPA
Advanced Research Projects Agency. A Department of Defense Agency in the USA.

ASN.1
See Abstract Syntax Notation One.

Association
A communication relationship established between application entities.

Attribute
Information in an entry describing some aspect of the object. Also a component of an X.400 address, for example,
organization.

Attribute type
Classification of the aspects used to describe objects.

Authentication
The process of determining the identity of a communications partner.

Authorization
See Access control.

Autonomous Administrative Area (AAA)
See Administrative area.

Autonomous Administrative Point (AAP)
See Administrative point.

Auxiliary object class
An object class whose members have some common characteristics, despite (potentially) belonging to different
structural object classes.

BER
Basic Encoding Rules. Definition of a concrete syntax for ASN.1, mainly used when exchanging data (defined in
ASN.1) between applications on different systems.

Bind
An action to establish an association between processes for the purpose of invoking or performing operations.

BNF
Bachus-Naur Format. A type of notation used when defining encodings for objects or attributes.

C
Abbreviation for Country in the DIT.

CAIA
See Collective Attribute Inner Area .

Glossary

381M-Vault Administration Guide

CASA
See Collective Attribute Specific Area .

CCITT
The International Telegraph and Telephone Consultative Committee, now known as the ITU-T.

Chaining
A style of interaction whereby the DSA satisfies a request by invoking another DSA and passing back the reply.

Collective Attribute Inner Area (CAIA)
An inner area of the DIT used to administer a group of attributes. See also Inner administrative area.

Collective Attribute Specific Area (CASA)
A specific area of the DIT used to administer a group of attributes. See also Specific administrative area.

Common Name
A Directory attribute.

Consumer
The DSA receiving (or consuming) information in a shadowing agreement.

Context prefix
The Distinguished Name of the entry at the Root of a naming context.

Cross reference
A reference allowing direct access to the DSA which holds a particular naming context.

DAP
See Directory Access Protocol.

DAS
See Directory Abstract Service.

DIB
See Directory Information Base.

Directory
When written with a capital D, this is a distributed database built to X.500 standards.

Directory Abstract Service (DAS)
A service providing operations to access and update the Directory.

Directory Access Protocol (DAP)
An OSI application layer protocol used by the DUA for communicating with the Directory via the DSA.

Directory Information Base (DIB)
A collection of information about objects, which is stored by the Directory.

Directory Information Model
The fundamental structures of the DIB, standardised to provide a basis for defining the Directory Service and its use.

Directory Information Shadowing Protocol (DISP)
An OSI application layer protocol used for the exchange of Directory information in support of shadowing agreements.

Directory Information Tree (DIT)
The DIB, considered as a tree, whose vertices are entries and whose arcs are relationships between the corresponding
objects. A way of defining relationships between, and access routes to, the complete set of information contained in
the Directory.

Directory Management Domain (DMD)
The set of DUAs and DSAs managed by a single organization.

Glossary

382M-Vault Administration Guide

Directory name
A term often used for the Distinguished Name (DN) of an entry in the Directory. Although an entry can have only
one DN it may have more than one Directory name, as it may have an alias.

Directory Operational Bindings Management Protocol (DOP)
A protocol used to configure the binding of a cooperation agreement between DSAs. Not implemented.

Directory schema
The set of rules enforced by the Directory which governs the contents of the DIB; the consistency rules applying to
the object classes making up the DIB

Directory Service
The service provided by the Directory to its users.

Directory System Agent (DSA)
A server process which maintains and provides access to defined parts of the DIT.

Directory System Protocol (DSP)
An OSI application layer protocol used for communication between DSAs.

Directory User Agent (DUA)
A client application which represents a user in accessing the Directory.

DISP
See Directory Information Shadowing Protocol.

Distinguished Name (DN)
The name for an object, based upon the unique path through the DIT from the Root to the object’s entry.

Distribution model
The model which defines how an authority can locate the entries which make up the DIT among the DSAs it operates.

DIT
See Directory Information Tree.

DIT domain
A subset of the DIT held by a particular Directory Management Domain.

DMD
See Directory Management Domain.

DNS
See Domain Name Service.

DN
See Distinguished Name.

Domain Name Service (DNS)
A service for providing a mapping between domain names (for example, isode.com) and IP addresses.

DSA
See Directory System Agent.

DSA Abstract Service
The capability for chaining requests from one DSA to another.

DSA Information Model
A DSA’s internal model of the information it holds.

DSA Information Tree
A tree, held by the DSA, containing all the names in the DIT known to this DSA.

Glossary

383M-Vault Administration Guide

DSA Specific Entry (DSE)
A private, internal object held for each name in the DSA Information Tree, which contains the attributes for those
entries mastered by the DSA.

DSE
See DSA Specific Entry.

DSP
See Directory System Protocol.

DUA
See Directory User Agent.

Entry
A unit in the Directory representing one object and identified by its Distinguished Name.

Entry type
See Object class.

First level DSA
A DSA which holds a first level (below the Root) naming context and knowledge of all other naming contexts which
are immediate subordinates of the Root.

First level entry
An entry in the Directory immediately below the Root.

Fragment
That part of the DIB held by a single DSA; it can contain several naming contexts.

GDAM
Generic Directory Access Module. In the M-Vault Server, GDAMs provide an abstract interface to back-end database
services.

Glue
A placeholder entry in the DIT with no attributes.

Hierarchical operational binding
An operational binding whose participants are the master DSAs for a pair of adjacent naming contexts, one holding
a subordinate reference to the other.

IANA
Internet Assigned Numbers Authority.

Inner administrative area
An overlapping area of the DIT inside a specific administrative area, used for specific purposes, for example, access
control.

Integrity
Protection against unauthorized access to information, typically while that information is in transit on the network.

Intranet
A local network based on Internet standards.

IP address
Internet Protocol address. A dotted number list (for example 193.133.227.19) which identifies a host machine on an
Internet network.

ISO
International Standards Organization.

Glossary

384M-Vault Administration Guide

ITU-T
International Telecommunication Union - Telecommunication Standardisation Bureau, which issues recommendations
to regulate the national and international operation of telecommunications authorities, public network operators and
other interested parties. Formerly known as CCITT.

Knowledge
Operational information allowing a DSA to route requests to other DSAs.

Knowledge reference
An item of knowledge identifying a DSA Access Point by name and address.

LDAP
See Lightweight Directory Access Protocol.

LDAP Data Interchange Format (LDIF)
A widely accepted format for importing and exporting Directory information between LDAP or X.500 servers.

LDIF
See LDAP Data Interchange Format.

Leaf entry
An entry in the DIT with no other entries beneath it.

Lightweight Directory Access Protocol (LDAP)
An Internet protocol, passed directly over TCP/IP, used to provide access to the Directory.

Ltcldish
A command line interface DUA for data managers, operating over LDAP. See also lTcldish.

MHS-DS
An abbreviation used to refer to a method of configuring MTAs and Message Stores using an X.500 Directory.

Model
See Administrative model, Directory Information Model, Distribution model and DSA Information Model.

M-Vault Console
Isode’s graphical DUA for managing the Directory.

Name
The identifier of an object, used as the basis for finding its entry in the DIB. See also Distinguished Name and Relative
Distinguished Name.

Naming authority
The organization given the task of allocating names and ensuring they are unambiguous.

Naming context
The subtree of the DIT held by a single DSA.

O
Abbreviation for Organization in the DIT.

Object
Something or someone (for example, a machine, application or user) which is described by the information in the
Directory.

Object class
A collection of actual or conceivable objects sharing certain characteristics. See also Abstract object class, Auxiliary
object class and Structural object class.

Object entry
An entry in the Directory representing an object.

Glossary

385M-Vault Administration Guide

Object identifier (OID)
A labelling mechanism, in the form of a hierarchical arrangement of integers, used to identify the representation of
objects.

Open Systems Interconnection (OSI)
Set of design rules and protocol specifications defined to allow systems from any source to talk to each other, thus
evading problems of hardware and software incompatibility.

Operation
A requested action upon the Directory, for example, read, search or list.

Operational attribute
An attribute of a Directory entry which contains operational information.

Operational binding
An agreement between two processes to engage in some kind of interaction.

OSI
See Open System Interconnection.

OU
Abbreviation for Organizational Unit in the DIT.

PA
See Presentation Address.

Presentation Address (PA)
The fundamental mechanism used by applications to address other application entities.

Protocol
The set form in which data must be presented to be handled by a particular computer configuration or process.

RDN
See Relative Distinguished Name.

Referral
A reply to an operation indicating that the DSA was unable to carry out the request and identifying another DSA
which should be contacted directly.

Relative Distinguished Name (RDN)
The lowest level of Distinguished Name identifying an entry in the DIT.

Replication
The process of copying a section of the DIT from one DSA to another. See also Shadowing.

RFC
Request For Comments. Standards documents defining Internet protocols. Relevant RFCs are listed in the Appendix I,
References section.

Role
A job function within an organization. More than one individual can be assigned to a single role.

Root
The top of the DIT tree; this is not an object, and does not have an entry.

Root DSE
A conceptual element at the Root of the DSA, used for holding operational information. See also DSA Specific Entry.

SASL
See Simple Authentication and Security Layer.

Schema
Consistency rules for object classes in the Directory. See also Directory schema, Subschema, System schema.

Glossary

386M-Vault Administration Guide

Secure socket layer
See TLS .

Shadowing
The process of replicating part of the DIT from one DSA to another under the terms of a shadowing agreement.

Shadowing agreement
A contract between two DSAs, one to supply information and the other to receive (or consume) it. The information
is always updated by the shadow supplier and changes (or a new copy) are supplied by the shadow supplier at agreed
intervals.

Simple authentication and security layer (SASL)
A protocol-independent mechanism which supports different secure authentication mechanisms in an easily extensible
fashion.

Specific administrative area
A non-overlapping area of the DIT inside an administrative area, used for specific purposes, for example, access
control.

Structural object class
The classification of an object which gives its position in the object class hierarchy.

Subentry
An entry in the DIT which must be placed immediately below an administrative point entry. Subentries contain policy
information, and are used by the Directory itself.

Subschema
Information to regulate the entries held by a DSA. Part of the total Directory schema.

Superior reference
A reference forming part of a reference path from its holder to the Root. A superior reference is required for all DSAs
which do not master a first level naming context. It is the Access Point of a DSA to contact if there is no other suitable
reference to progress the operation.

Supplier
The DSA supplying information in a shadowing agreement.

System schema
The set of rules governing operational information.

Tcl
Tool Command Language.

Tcldish
A command line interface DUA for data managers, operating over DAP. See also Ltcldish.

TCP/IP
Transport Control Protocol/Internet Protocol.

TLS
Transport Layer Security protocol. The TLS protocol provides communications privacy over the Internet.

Top
The entry at the top of a naming context, that is, the context prefix entry. It belongs to an abstract object class, and is
therefore only used by the Directory.

X.500
A set of standards devised for the Directory, developed jointly by the ITU-T and ISO/IEC, also known as ISO 9594.

X.501
A set of standards for X.500 models.

Glossary

387M-Vault Administration Guide

X.509
A set of standards for X.500 authentication.

X.511
A set of standards for X.500 abstract service.

X.518
A set of standards for X.500 distributed operations.

X.520
A set of standards for X.500 selected attribute types.

X.521
A set of standards for X.500 selected object classes.

X.525
A set of standards for X.500 replication.

Glossary

388M-Vault Administration Guide

	M-Vault Administration Guide
	Table of Contents
	Chapter 1 Overview
	1.1 Roles
	1.2 Planning and preparing for the Directory
	1.2.1 The logical structure of the Directory
	1.2.1.1 What sort of structure do you need?

	1.2.2 The initial naming context
	1.2.3 Administration of the Directory
	1.2.4 Distribution of the Directory

	1.3 Directory management tools
	1.3.1 Managing the Directory Service
	1.3.2 Maintaining information in the Directory
	1.3.3 Monitoring the Directory Service

	Chapter 2 Setting up the Directory Service
	2.1 Information required for setup
	2.1.1 The Directory Server’s role in the administration
	2.1.2 The information the Directory Server is to master
	2.1.3 Using bind profiles

	2.2 Creating a Directory Server
	2.2.1 Creating the Directory Server system account
	2.2.2 Starting M-Vault Console
	2.2.2.1 Setting a passphrase

	2.2.3 Creating a Directory Server
	2.2.3.1 Creating a simple DSA for messaging evaluations
	2.2.3.2 Creating a DSA with super user account
	2.2.3.3 Specifying a presentation address

	2.3 What’s next?

	Chapter 3 Managing the Data
	3.1 Classifying the data
	3.1.1 What information can be stored?
	3.1.2 Standard attributes
	3.1.3 Internet attributes
	3.1.4 Collective attributes
	3.1.5 Unknown attributes

	3.2 Data management using Sodium
	3.2.1 Profile passphrase
	3.2.2 Binding to the Directory using Sodium
	3.2.2.1 Connecting to the Directory
	3.2.2.2 Creating or modifying a bind profile
	3.2.2.3 Password policy

	3.2.3 Changing your password

	3.3 Finding Directory entries
	3.3.1 Browsing the Directory
	3.3.2 Searching the Directory
	3.3.2.1 Viewing search results
	3.3.2.2 Comparing attributes
	3.3.2.3 Security policy

	3.4 Modifying entries
	3.4.1 Changing the value of an attribute
	3.4.1.1 Highlighting errors
	3.4.1.2 Undoing changes

	3.4.2 Changing an entry’s object class
	3.4.3 Entering data containing line breaks
	3.4.4 Moving and renaming
	3.4.4.1 Moving an entry
	3.4.4.2 Renaming an entry

	3.5 Adding single entries to the Directory
	3.6 Deleting entries
	3.6.1 Deleting a single entry
	3.6.2 Deleting an entire subtree

	3.7 Collective Attributes
	3.7.1 Finding a suitable Administrative Point
	3.7.2 Managing Collective Attribute Subentries

	3.8 Importing and exporting entries
	3.8.1 LDIF files
	3.8.1.1 Contents of an LDIF file
	3.8.1.2 Sample of an LDIF file

	3.8.2 Exporting entries to an LDIF file
	3.8.3 Importing entries from an LDIF file
	3.8.4 Loading files into specific attributes

	3.9 Checking the referential integrity of attributes
	3.10 Managing identities
	3.10.1 Generating a certificate request
	3.10.2 Continuing to create a deferred identity
	3.10.3 Linking a certificate to a Directory entry
	3.10.4 Creating an Identity for the local DSA
	3.10.5 Managing identities
	3.10.6 Managing PKI attributes

	3.11 Security Information Objects
	3.11.1 Setting up a Security Policy
	3.11.2 Setting up catalogs
	3.11.3 Editing catalogs
	3.11.4 Applying a label to an entry
	3.11.5 Applying a clearance to an entry

	3.12 Displaying warnings and errors
	3.13 Customizing Sodium
	3.13.1 Changing settings
	3.13.2 Creating and modifying templates

	Chapter 4 System Management
	4.1 Starting M-Vault Console
	4.1.1 M-Vault Console’s use of Bind Profiles

	4.2 Starting the Directory Server
	4.2.1 Platform Specific Service Management
	4.2.2 Isode Management Tools

	4.3 Opening a management connection
	4.3.1 Creating a new management connection

	4.4 Overview of M-Vault Console
	4.5 General configuration of the Directory Server
	4.5.1 Changing address information
	4.5.2 Operation configuration

	4.6 Database configuration
	4.6.1 Creating a database
	4.6.2 Configuring the in-memory database (IMGDAM)
	4.6.3 Checkpointing
	4.6.4 Database indexes
	4.6.4.1 Index search types
	4.6.4.2 Adding an index

	4.7 Managing configuration files
	4.8 Backup and recovery procedures
	4.8.1 Backup and recovery of the in-memory GDAM database
	4.8.1.1 Backup procedure
	4.8.1.2 Recovery procedure

	4.8.2 Exporting and Importing Data
	4.8.2.1 Using dbulk to Import and Export Data
	4.8.2.2 Using dsnapdump to Export Historical Snapshots
	4.8.2.3 Using dlogdump to export changes

	Chapter 5 Authentication
	5.1 Security in the Directory
	5.1.1 General security issues

	5.2 Introduction to authentication
	5.2.1 Establishing identity

	5.3 Configuring authentication for specific protocols
	5.3.1 DAP (as responder)
	5.3.2 LDAP v3 (as initiator)
	5.3.3 LDAP v3 (as responder)
	5.3.4 DSP (as initiator or responder)
	5.3.5 DISP (as initiator or responder)

	5.4 Configuring the Directory for X.509
	5.4.1 The Directory Server’s own certificate
	5.4.2 Additional X.509 configuration

	5.5 SASL authentication
	5.5.1 Configuring SASL
	5.5.2 SASL mechanisms
	5.5.3 SASL userid mapping
	5.5.3.1 Generic mapping rule – Active Directory compatible
	5.5.3.2 Generic mapping rule – domain part search
	5.5.3.3 Generic mapping rule – two searches
	5.5.3.4 Generic mapping rule – single search

	5.5.4 SASL GSSAPI configuration
	5.5.4.1 GSSAPI mapping rule - Active Directory Compatible
	5.5.4.2 GSSAPI mapping rules - Domain Part and Two Searches
	5.5.4.3 GSSAPI mapping rule - Single search

	5.5.5 SASL EXTERNAL configuration

	5.6 Password management
	5.6.1 Password policy
	5.6.2 Changing passwords
	5.6.3 Storing passwords in the GDAM

	5.7 TLS configuration
	5.7.1 Configuring TLS
	5.7.2 Server keys
	5.7.2.1 Identity information
	5.7.2.2 Client authentication
	5.7.2.3 Mandating TLS in LDAP

	5.7.3 Supported TLS cipher suites
	5.7.4 Revocation checking

	5.8 Authentication levels
	5.8.1 Levels supported
	5.8.2 Derivation of authentication level
	5.8.2.1 DAP
	5.8.2.2 LDAP
	5.8.2.3 DSP
	5.8.2.4 DISP
	5.8.2.5 LDAP chaining

	Chapter 6 Controlling Access
	6.1 Overview of access control
	6.2 Global access control
	6.2.1 Roles, Rules, Items and Precedence
	6.2.2 Sodium’s Global Access Control View
	6.2.3 Using predefined roles and rules
	6.2.3.1 Creating and modifying roles
	6.2.3.2 Creating and modifying rules
	6.2.3.3 Making library roles and rules available
	6.2.3.4 Importing and exporting roles and rules
	6.2.3.5 Removing unused roles and rules

	6.2.4 Modifying the area map

	6.3 Local Access Control Information (ACI)
	6.3.1 Access control held in the entries
	6.3.2 Access control held in subentries
	6.3.3 Access control held in the administrative point

	6.4 How access control is determined from ACI
	6.4.1 Access Control Decision Function inputs
	6.4.2 Access Control Information ACI items
	6.4.3 Access control decision function (ACDF) rules
	6.4.4 The effects of ACI on operations

	6.5 Security labels and clearance
	6.5.1 Introduction to security labels and clearances
	6.5.2 Interaction with simplified and basic access controls
	6.5.3 Security policy configuration
	6.5.4 User clearances and object security labels
	6.5.5 Directory Server clearance and security labels configuration

	Chapter 7 Connecting Directories
	7.1 Overview
	7.2 Connection details for Directory Servers
	7.3 Configuring knowledge references
	7.3.1 Superior reference
	7.3.2 Subordinate and cross references

	7.4 Securing connections between Directory Servers
	7.4.1 DISP authentication
	7.4.2 DSP authentication

	7.5 Distributive changes
	7.6 Using a Directory Server as a connection

	Chapter 8 Shadowing
	8.1 Overview
	8.1.1 Replicating parts of the Directory
	8.1.1.1 Chop shadowing
	8.1.1.2 Attribute filtering

	8.2 System-wide shadowing settings
	8.3 Creating shadow agreements
	8.3.1 The supplier’s end of a shadowing agreement
	8.3.2 The consumer’s end of a shadow agreement

	8.4 Configuring shadow agreements
	8.4.1 Viewing the status of shadow agreements
	8.4.2 Enabling agreements
	8.4.3 Specifying update mode
	8.4.4 Monitoring shadow agreements

	Chapter 9 High Availability
	9.1 Failover
	9.1.1 Fundamentals and limitations
	9.1.1.1 Failover modes
	9.1.1.1.1 Normal failover mode
	9.1.1.1.2 Forced failover mode

	9.1.2 Creating a failover configuration
	9.1.3 Managing the failover group
	9.1.3.1 Adding failover mirrors
	9.1.3.2 Removing failover mirrors

	9.1.4 Failing over to a new master
	9.1.4.1 Errors and recovery

	9.2 Multimaster
	9.2.1 Fundamentals and limitations
	9.2.2 Creating a multimaster configuration
	9.2.3 Managing the multimaster group
	9.2.3.1 Adding multimaster replica servers
	9.2.3.2 Removing multimaster replica servers

	9.3 Hot-standby clusters
	9.3.1 On Unix systems
	9.3.2 On Windows systems

	Chapter 10 HTTP And OCSP Services
	10.1 Configuring HTTP Services
	10.1.1 Configuring the Password Modify Web Application
	10.1.2 Publishing PKI Information Over HTTP
	10.1.2.1 Revocation List
	10.1.2.2 Cross Certificate Pair

	10.2 Configuring OCSP
	10.2.1 Configuring a Logical OCSP Service

	Chapter 11 Monitoring the Directory
	11.1 Logging
	11.1.1 How logging works
	11.1.1.1 Record types
	11.1.1.2 Output streams
	11.1.1.3 Format of messages in output streams
	11.1.1.4 Logging configuration

	11.1.2 Changing Directory Server logging using M-Vault Console
	11.1.2.1 Audit logging
	11.1.2.2 Event logging
	11.1.2.3 Creating a new logging stream

	11.1.3 Using the standalone logconfig tool
	11.1.4 What is written to the log files?
	11.1.4.1 Events stream
	11.1.4.2 Audit stream
	11.1.4.2.1 Process start and termination
	11.1.4.2.2 Association management
	11.1.4.2.3 Incoming and outbound operations

	11.1.5 Remote monitoring of log files

	Chapter 12 Synchronising Directories (using Sodium Sync)
	12.1 Overview
	12.2 Setting up a simple sync from Active Directory
	12.3 More advanced use of Sodium Sync
	12.4 Setting up a merge-sync
	12.5 Synchronizing to Active Directory
	12.6 Checking syncs
	12.7 Sync groups and replication workflow
	12.8 Correlated syncs
	12.8.1 A simple worked example
	12.8.2 Setting up a correlated sync

	12.9 Approving correlations
	12.10 Configuring Sodium Sync Server
	12.11 Configuration files
	12.11.1 Configuring mapping rule-sets
	12.11.1.1 Mapping rule-set file syntax reference
	12.11.1.2 Annotated example of mapping rule-sets

	12.11.2 Using CSV files as input or output
	12.11.2.1 CSV profile syntax reference

	12.11.3 Using an SQL database as source or target
	12.11.4 Correlation profile
	12.11.5 Script tag with exports
	12.11.6 Scripting interface to Directory entries
	12.11.6.1 Reading values
	12.11.6.2 Modifying values
	12.11.6.3 DN and RDN manipulation
	12.11.6.4 Iterators
	12.11.6.5 External conversions and conformance
	12.11.6.6 Reported warnings and failures

	12.12 Fixing broken sync states

	Chapter 13 Managing Certificate Authorities (using Sodium CA)
	13.1 Introduction
	13.2 Creating a CA
	13.3 Issuing certificates
	13.4 Managing certificates
	13.5 Revoking a certificate
	13.6 Renewing a certificate
	13.7 Rekeying a certificate
	13.8 Updating the CRL Distribution Point
	13.9 Updating the Access Description List
	13.10 Directory operations
	13.10.1 Browsing the Directory
	13.10.2 Creating an X.509 identity
	13.10.3 Issuing cross-certificates

	Chapter 14 OAuth2 Capabilities
	14.1 Overview
	14.2 OAuth2 Server Configuration
	14.2.1 OAuth Startup
	14.2.2 Location in the Directory
	14.2.3 Configuring with Sodium
	14.2.4 Example LDIF
	14.2.5 TLS configuration

	14.3 OAuth2 Service Configuration
	14.3.1 Configuring With Sodium

	14.4 OAuth2 Client Registration
	14.4.1 OAuth2 Client Object
	14.4.2 Example LDIF

	14.5 Single Sign-On (SSO)
	14.5.1 Overview
	14.5.1.1 Mozilla Firefox Configuration
	14.5.1.2 Internet Explorer Configuration
	14.5.1.3 Google Chrome Configuration

	Chapter 15 SPIF Editor
	15.1 SPIF Editor Overview
	15.1.1 Getting started

	15.2 Creating New SPIF
	15.3 Managing Existing SPIF
	15.4 SPIF Classifications
	15.4.1 Adding Classifications
	15.4.2 Removing Classifications

	15.5 SPIF Categories
	15.5.1 Adding Category
	15.5.2 Adding Category Value
	15.5.3 Removing Category
	15.5.4 Moving Categories

	15.6 SPIF Utilities
	15.6.1 Generate Catalog
	15.6.2 Converting Label Catalog to XEP-258 Format
	15.6.3 Generate Label
	15.6.4 Generate Clearance
	15.6.5 Access Control Checks

	Appendix A Introduction to Directories
	A.1 Definition of the Directory
	A.2 Directory user information
	A.2.1 Directory information tree
	A.2.2 Entries and attributes
	A.2.3 Object classes and the schema
	A.2.4 Naming objects
	A.2.4.1 Choice of names
	A.2.4.2 Aliases

	A.3 Operational information
	A.3.1 Administration of the Directory
	A.3.1.1 Administrative points
	A.3.1.2 Security

	A.3.2 Distribution of the Directory
	A.3.2.1 Directory Servers

	A.3.3 Directory User Agent (DUA)
	A.3.3.1 Interactions between Directories and DUAs

	A.3.4 Shadowing
	A.3.5 Directory Server information model
	A.3.5.1 Directory operational attributes
	A.3.5.2 Directory Server shared attributes
	A.3.5.3 Directory Server’s information tree

	A.4 Functionality of M-Vault
	A.4.1 Isode’s interpretation of the standards

	Appendix B Attributes
	B.1 Sample attributes of object classes
	B.1.1 Country
	B.1.2 Organization
	B.1.3 Organizational unit
	B.1.4 Person
	B.1.4.1 Organizational person and inetOrgPerson

	B.1.5 Organizational Role
	B.1.6 Group of Names
	B.1.7 Alias
	B.1.8 Domain related object
	B.1.9 LabeledURI object

	B.2 Extending the schema
	B.2.1 *.gen files
	B.2.2 *.at files
	B.2.3 *.oc files
	B.2.4 Customising DUAs

	Appendix C Attribute Syntaxes
	C.1 Character sets and matching rules
	C.1.1 PrintableString characters
	C.1.2 TeletexString characters
	C.1.3 BMPStrings, UniversalStrings and UTF8Strings
	C.1.4 Matching rules

	C.2 Common attribute syntaxes
	C.2.1 ASN
	C.2.2 Audio
	C.2.3 BitString
	C.2.4 Boolean
	C.2.5 CaseExactString/CaseIgnoreString
	C.2.6 CaseIgnoreList
	C.2.7 CountryString
	C.2.8 DeliveryMethod
	C.2.9 DestinationString
	C.2.10 DN
	C.2.11 FacsimileTelephoneNumber
	C.2.12 GeneralizedTime
	C.2.13 IA5String/CaseIgnoreIA5String
	C.2.14 Integer
	C.2.15 JPEG
	C.2.16 Mailbox
	C.2.17 NameAndOptionalUID
	C.2.18 NisBootParameter
	C.2.19 NisNetgroupTriple
	C.2.20 NisPublicOrSecretKey
	C.2.21 NumericString
	C.2.22 ObjectClass
	C.2.23 OctetString
	C.2.24 OID
	C.2.25 Password/EncryptedPassword
	C.2.26 Photo
	C.2.27 PostalAddress
	C.2.28 PresentationAddress
	C.2.29 PrintableString/CaseIgnorePrintableString
	C.2.30 TelephoneNumber
	C.2.31 TelexNumber
	C.2.32 UTCTime
	C.2.33 UUID

	C.3 X.500 operational attribute syntaxes
	C.3.1 DSEType
	C.3.2 ProtocolInformation
	C.3.3 AccessPoint93
	C.3.4 MasterAndShadowAccessPoints
	C.3.5 SupplierOrConsumer
	C.3.6 SupplierInformation
	C.3.7 SupplierAndConsumer

	C.4 X.400 attribute syntaxes
	C.4.1 ORAddress
	C.4.2 ORName
	C.4.3 DLSubmitPermission

	C.5 ACP133 syntaxes
	C.5.1 RIParameters
	C.5.2 Remarks
	C.5.3 ONSupported
	C.5.4 MLReceiptPolicy
	C.5.5 Addresses

	C.6 Reading the subschema from a client

	Appendix D Customising Sodium
	D.1 <editor-templates> element
	D.2 <include> element
	D.3 <enumeration> element
	D.4 <value> element
	D.5 <template> element
	D.6 <form> element
	D.6.1 Within a <template> element
	D.6.2 Within the <editor-templates> element

	D.7 <group> element
	D.8 <label> element
	D.9 <memberof> element
	D.10 <editor> element
	D.10.1 autostring editor
	D.10.2 binary editor
	D.10.3 boolean editor
	D.10.4 certificate editor
	D.10.5 certificatepair editor
	D.10.6 certificaterevocationlist editor
	D.10.7 clearance editor
	D.10.8 dn editor
	D.10.9 dlsubmitpermission editor
	D.10.10 enumerated editor
	D.10.11 generalizedtime editor
	D.10.12 jpeg editor
	D.10.13 oraddress editor
	D.10.14 orname editor
	D.10.15 pkcs7 editor
	D.10.16 postaladdress editor
	D.10.17 readonlylist editor
	D.10.18 securitylabel editor
	D.10.19 securitylabelinfo editor
	D.10.20 string editor
	D.10.21 stringtable editor
	D.10.22 subtreespec editor
	D.10.23 Template icons

	D.11 ‘Add’ templates

	Appendix E Advanced Configuration
	E.1 Core Configuration
	E.1.1 Administrative Limits
	E.1.2 Encrypting pphr files
	E.1.3 X.509 Strong Authentication
	E.1.4 TLS
	E.1.5 Shadowing
	E.1.6 Chaining
	E.1.7 Logging
	E.1.8 Miscellaneous
	E.1.9 SASL
	E.1.10 Security Labels and Clearance
	E.1.11 Password Policy
	E.1.12 Password Hashing
	E.1.13 Example

	E.2 Peer Configuration
	E.2.1 Shadowing
	E.2.2 Chaining
	E.2.3 Example

	E.3 Shadow Agreements
	E.3.1 Supplier Agreements
	E.3.2 Consumer Agreements
	E.3.3 Agreement State

	E.4 In-memory GDAM
	E.4.1 GDAM Files
	E.4.2 Attribute indexes
	E.4.2.1 The dsimkindex utility

	E.5 Root DSE
	E.5.1 Example

	Appendix F Running as an OS Service
	F.1 Linux services
	F.2 Windows services
	F.2.1 The Isode Service Configuration tool

	Appendix G Tcldish – the Tcldish and Ltcldish DUAs
	G.1 Tcl and attribute syntax quoting
	G.1.1 Tcl quoting
	G.1.2 Attribute syntax quoting
	G.1.3 Examples of the application of quoting

	G.2 Tailoring Tcldish and Ltcldish
	G.2.1 Use of the dsaptailor file by tcldish
	G.2.2 Use of the ldaptailor file by Ltcldish
	G.2.3 User’s .duarc file
	G.2.4 The .tcldishrc tailoring file

	G.3 Running Tcldish and Ltcldish
	G.4 Command overview
	G.4.1 Commands and flags not applicable to Ltcldish
	G.4.2 How objects can be referenced
	G.4.3 Service control flags
	G.4.4 Read flags

	G.5 Commands for Directory operations
	G.5.1 dbind
	G.5.2 dunbind
	G.5.3 dmoveto
	G.5.4 dshowentry
	G.5.5 dcompare
	G.5.6 dlist
	G.5.7 dsearch
	G.5.7.1 LDAP filters
	G.5.7.2 Common filters

	G.5.8 dadd
	G.5.9 ddelete
	G.5.10 dmodify
	G.5.11 dmodifyrdn

	G.6 Other Tcldish commands
	G.6.1 dsequence
	G.6.2 dshowname
	G.6.3 dstatus
	G.6.4 dmanager

	G.7 Bulk data utilities
	G.7.1 The Tcldish dbulkload command
	G.7.1.1 The Tcldish dbulkload command for CSV data
	G.7.1.1.1 The CSV data file
	G.7.1.1.2 The CSV template file
	G.7.1.1.3 Examples of interactive bulk loading
	G.7.1.1.4 Running bulk data utilities froma Tcldish script

	G.7.1.2 The Tcldish dbulkload command for LDIF data

	G.7.2 The dbulkclean command
	G.7.3 The dbulkdump command

	Appendix H Dmish Scripting Interface
	H.1 Using Dmish
	H.2 Creating a new Directory Server
	H.3 Starting a Directory Server
	H.4 Stopping a Directory Server
	H.5 Opening a management connection
	H.6 Closing a management connection
	H.7 Manipulating managed objects
	H.7.1 Types of objects that can be managed
	H.7.1.1 Managing indexes

	H.7.2 Default list base
	H.7.3 List managed objects
	H.7.4 Show managed objects
	H.7.5 Add managed object
	H.7.6 Modify managed object
	H.7.7 Remove managed object

	H.8 Deleting entire subtrees
	H.9 Examples
	H.9.1 Creating and opening a Directory
	H.9.2 Establishing a consumer shadowing agreement
	H.9.3 Establishing a supplier shadowing agreement

	H.10 Templated DSA creation
	H.10.1 Files used by the template mechanism
	H.10.1.1 Directory Server Creation Template
	H.10.1.1.1 <dsa-creation-template> element
	H.10.1.1.2 <ldif> element
	H.10.1.1.3 <gac> element
	H.10.1.1.4 <dn-param> element
	H.10.1.1.5 <dsa> element
	H.10.1.1.6 <naming-context> element
	H.10.1.1.7 <create-entry> element
	H.10.1.1.8 <admin-point> element
	H.10.1.1.9 <manager> element
	H.10.1.1.10 <create-profile> element
	H.10.1.1.11 <pw-param> element
	H.10.1.1.12 <superuser> element
	H.10.1.1.13 <opt-group> element
	H.10.1.1.14 <opt-rule> element
	H.10.1.1.15 <opt-rule-limit> element
	H.10.1.1.16 <attr-to-index> element

	H.10.1.2 Global Access Control information
	H.10.1.3 LDIF data file

	H.10.2 dsa-setup utility

	Appendix I References
	I.1 RFCs
	I.2 Recommendations and standards
	I.3 Other publications
	I.4 Obtaining documents

	Glossary

